Advertisement

Simple Hydrothermal Synthesis for Mesoporous Pebble-Like NiCo2O4 Nanostructures and Their Attractive Magnetic Properties

  • Wenqi Wang
  • Wumei Ye
Original Paper
  • 60 Downloads

Abstract

The mesoporous pebble-like NiCo2O4 nanostructures were smoothly obtained via a simple hydrothermal route and the succeeding annealing treatment. Various techniques, including XRD, SEM, TEM, Raman spectra, FTIR, and MH curves have been used to study the obtained products. The obtained results exhibited that the morphology of spinel NiCo2O4 could be controlled by adjusting the content of cetyltrimethylammonium bromide (CTAB). The morphology of NiCo2O4 nanostructures transformed from a 300-nm popcorn-like to 30–40-nm pebble-like nanostructure by changing the content of CTAB. Compared with the popcorn-like NiCo2O4 nanostructures, the pebble-like samples showed effective blue shifting of Raman spectroscopy, which might be due to the nano-sized effect of NiCo2O4 particles. Finally, vibration sample magnetometer (VSM) measurements indicated the samples transformed from weak ferromagnetic (popcorn-like) to paramagnetic (pebble-like) due to small particle size.

Keywords

Hydrothermal synthesis Mesoporous Pebble-like NiCo2O4 Magnetic properties 

Notes

Funding Information

The work was supported by the Important Project of Outstanding Youth Talents in Higher Education Institution (gxfxZD2016258), Important Project of Anhui Provincial Education Department (KJ2016A889), Innovative Research Team of Anhui Provincial Education Department (2016SCXPTTD), Key Discipline of Material Science and Engineering of Suzhou University (2017XJZDXK3), and the Candidates of the Third Group of Academic Leaders for Suzhou University (2018XJHB05)

References

  1. 1.
    Hossenini, S.A., Majidi, V., Abbasin, A.R.: Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization. J. Sulfur. Chem. 39, 119–129 (2018)CrossRefGoogle Scholar
  2. 2.
    Kundu, M., Karunakaran, G., Kolesnikov, E., et al.: Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors. J. Sulfur. Chem. 59, 90–98 (2018)Google Scholar
  3. 3.
    Liu, Y., Zhang, Y., Wang, T., Qin, P., Guo, Q., Pang, H.: Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. RSC Adv. 4, 33514–33519 (2014)CrossRefGoogle Scholar
  4. 4.
    Yao, X., Zhao, C.Y., Kong, J., Zhou, D., Lu, X.: Polydopamine-assisted synthesis of hollow NiCo2O4 nanospheres as high-performance lithium ion battery anodes. RSC Adv. 4, 37928–37933 (2014)CrossRefGoogle Scholar
  5. 5.
    Siwal, P., Miao, L., Hu, J., Spinu, L., Kim, D.H., et al.: Thickness dependent structural, magnetic, and electronic properties of the epitaxial films of transparent conducting oxide NiCo2O4. J. Appl. Phys. 114, 103704 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Cabo, M., Pellicer, E., Rossinyol, E., Estrader, M., Ortega, A.L., Nogues, J., Castell, O., Surinach, S., Baro, M.D.: Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. J. Mater. Chem. 20, 7021–7028 (2010)CrossRefGoogle Scholar
  7. 7.
    Zhang, Y.F., Li, L.G., Su, H.Q., Huang, W., Dong, X.C.: Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 43, 43–59 (2015)CrossRefGoogle Scholar
  8. 8.
    Garg, N., Basu, M., Upadhyaya, K., Shivaprasad, S.M., Ganguli, A.K.: Controlling the aspect ratio and electrocatalytic properties of nickel cobaltite nanorods. RSC Adv. 3, 24328–24336 (2013)CrossRefGoogle Scholar
  9. 9.
    Umeshbabu, E., Rajeshkhanna, G., Ranga Rao, G.: Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrogen Energ. 39, 15627–15638 (2014)CrossRefGoogle Scholar
  10. 10.
    Liu, M.-C., Kong, L.-B., Lu, C., Li, X.-M., Luo, Y.-C., Kang, L., Li, X.H., Walsh, F.C.: A sol-gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159, 1262–1266 (2012)CrossRefGoogle Scholar
  11. 11.
    Cao, C., Wei, L.L., Wang, G., Shen, J.Q.: In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells. Adv. Electrochim. Acta 231, 609–616 (2017)CrossRefGoogle Scholar
  12. 12.
    Yang, X.Y., Yu, X.J., Yang, Q., Zhao, D.L., Zhang, K., Yao, J.X., Li, G., Zhou, H.D., Zuo, X.Q.: Controllable synthesis and magnetic properties of hydrothermally synthesized NiCo2O4 nano-spheres. Ceram. Inter. 43, 8585–8589 (2017)CrossRefGoogle Scholar
  13. 13.
    Anu Prathap, M.U., Satpati, B., Srivastava, R.: Facile preparation of β −ni(OH)2 −NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim. Acta 130, 368–380 (2014)CrossRefGoogle Scholar
  14. 14.
    Qian, L., Gu, L., Yang, L., Yuan, H., Xiao, D.: Direct growth of NiCo,2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5, 7388–7396 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, W., Qi, J.Q., Sui, Y.W., He, Y.Z., et al.: An asymmetric supercapacitor based on activated porous carbon derived from walnut shells and NiCo2O4 nanoneedle arrays electrodes. J Nanosci Nanotechno 18, 5600–5608 (2018)CrossRefGoogle Scholar
  16. 16.
    Yu, M., Wang, S., Hu, J., Chen, Z., Bai, Y., Wu, L., Chen, J., Weng, X.X.: Additive-free macroscopic-scale synthesis of coral-like nickel cobalt oxides with hierarchical pores and their electrocatalytic properties for methanol oxidation. Electrochimica Acta 145, 300–306 (2014)CrossRefGoogle Scholar
  17. 17.
    Umeshbabu, E., Rajeshkhanna, G., Justin, P., Rao, G.R.: Synthesis of mesoporous NiCo2O4 −rGO by a solvothermal method for charge storage applications. RSC Adv. 5, 66657–66666 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Xiao, K., Xu, Q., Li, N., Su, Y., Wang, H., Chen, S.: Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013)CrossRefGoogle Scholar
  19. 19.
    Cheng, J., Lu, Y., Qiu, K., Yan, H., Xu, J., Han, L., Liu, X., Luo, J., Kim, J.-K., Luo, Y.: Hierarchical core/shell NiCo2O4@ NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci. Rep. 5, 12099 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Das, A.K., Layek, R.K., Kim, N.H., Jung, D., Lee, J.H.: Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation. Nanoscale 6, 10657–10665 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Tang, C.-W., Wang, C.-B., Chien, S.-H.: Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73 (2008)CrossRefGoogle Scholar
  22. 22.
    Luo, W., Hu, X., Sun, Y., Huang, Y.: Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 22, 8916–8921 (2012)CrossRefGoogle Scholar
  23. 23.
    Meher, S.K., Ranga Rao, G.: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J. Phys. Chem. C 115, 25543–25556 (2011)CrossRefGoogle Scholar
  24. 24.
    Liu, Z.-Q., Xiao, K., Xu, Q.-Z., Li, N., Su, Y.-Z., Wang, H.-J., Chen, S.: Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013)CrossRefGoogle Scholar
  25. 25.
    Garg, N., Basu, M., Upadhyaya, K., Shivaprasad, S.M., Ganguli, A.K.: Controlling the aspect ratio and electrocatalytic properties of nickel cobaltite nanorods. RSC Adv. 3, 24328–24336 (2013)CrossRefGoogle Scholar
  26. 26.
    Sontu, U.B., Yelasani, V., Musugu, V.R.R.: Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by selfcombustion method. J. Magn. Magn. Mater. 374, 376–380 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Dong, Y.Y., Zhang, L.: Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals. J. Hazard. Mater. 333, 23–31 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Akhtara, M.N., Rahman, A., Sulong, A.B., Khan, M.A.: Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5 −xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Inter. 43, 4357–4365 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Spin Electron and NanomaterialsSuzhou UniversitySuzhouPeople’s Republic of China

Personalised recommendations