Quantification of the Interaction Field in Arrays of Magnetic Nanowires from the Remanence Curves

  • Elsie Araujo
  • Juan Manuel Martínez-Huerta
  • Luc Piraux
  • Armando Encinas
Original Paper


A method is presented that allows quantifying the average value of the interaction field in arrays of magnetic nanowires from the field difference between the isothermal remanence (IRM) and the DC demagnetizing (DCD) remanence curves when the normalized magnetization is equal to one third. Arrays of magnetic nanowires of different diameters and packing fractions are used to experimentally test the method. The results have been compared with those obtained using the method based on the difference between the remanence coercivity fields and with a mean-field expression for the interaction field, providing a very good agreement and thus validating the method. Additionally, it is shown that both the position (m0) and the shift along the magnetization axis of the intersection between the remanence curves with respect to the value of one third (δm = m0 − 1/3) provide qualitative information about the interaction field. The former indicates the type of interaction depending if the intersection is above (m0 > 1/3) or below (m0 < 1/3), which corresponds to a ferro or anti-ferro magnetic interaction, respectively. While for the latter, it is shown that the maximum deviation of the Delta-M plot from zero (ΔM m a x ) corresponds to three times the shift (ΔM m a x = 3δm).


Dipolar interaction Remanence curves Delta-M plot Magnetic nanowires 



The authors thank E. Ferain of it4ip S. A. for providing the PC membranes. E. Araujo thanks Fondo CONACYT- Secretaría de Energía - Sustentabilidad Energética.

Funding Information

This study received financial support from CONACYT Ciencia Básica grant 286626 and CONACYT-SENER I0027-2015-01-232611, and Fédération Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and Fonds de la Recherche Scientifique-FNRS under grant no. T.0006.16.


  1. 1.
    Sander, D., et al.: The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. 50, 363001 (2017)CrossRefGoogle Scholar
  2. 2.
    Fernández-Pacheco, A., Streubel, R., Fruchart, O., Hertel, R., Fischer, P., Cowburn, R.P.: Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Shi, W., Liang, R., Xu, S., Wang, Y., Luo, C., Darwish, M., Smoukov, S.K.: Layer-by-layer self-assembly: toward magnetic films with tunable anisotropy. J. Phys. Chem. C 119(23), 13215 (2015)CrossRefGoogle Scholar
  4. 4.
    Klughertz, G., Manfredi, G., Hervieux, P.A., Pichon, B.P., Begin-Colin, S.: Effect of disorder and dipolar interactions in two-dimensional assemblies of iron-oxide magnetic nanoparticles. J. Phys. Chem. C 120(13), 7381 (2016)CrossRefGoogle Scholar
  5. 5.
    Okamoto, S., Kikuchi, N., Hotta, A., Furuta, M., Kitakami, O., Shimatsu, T.: Microwave assistance effect on magnetization switching in Co-Cr-Pt granular film. Appl. Phys. Lett. 103(20), 202405 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Kumar, D., Chaudhary, S., Pandya, D.K.: Evolution of particle size and interparticle magnetic interactions with thickness in co-sputtered Cu79Co21 nanogranular thin films. J. Appl. Phys. 114(2), 023908 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Thevenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42, 7099 (2013)CrossRefGoogle Scholar
  8. 8.
    Ojha, S., Nunes, W.C., Aimon, N.M., Ross, C.A.: Magnetostatic interactions in self-assembled CoxNi1−xFe2O4/BiFeO3 multiferroic nanocomposites. ACS Nano 10(8), 7657 (2016). PMID: 27434047CrossRefGoogle Scholar
  9. 9.
    Albrecht, T.R., et al.: Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51, 1 (2015)CrossRefGoogle Scholar
  10. 10.
    Lau, J.W., Shaw, J.M.: Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. J. Phys. D: Appl. Phys. 44(30), 303001 (2011)CrossRefGoogle Scholar
  11. 11.
    Krawczyk, M., Grundler, D.: Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26(12), 123202 (2014)CrossRefGoogle Scholar
  12. 12.
    Carignan, L.P., Yelon, A., Menard, D., Caloz, C.: Ferromagnetic nanowire metamaterials: theory and applications. IEEE Trans. Microwave Theory Tech. 59(10), 2568 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Schreier, M., Chiba, T., Niedermayr, A., Lotze, J., Huebl, H., Geprägs, S., Takahashi, S., Bauer, G.E.W., Gross, R., Goennenwein, S.T.B.: Current-induced spin torque resonance of a magnetic insulator. Phys. Rev. B 92, 144411 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Long, N.V., Yang, Y., Teranishi, T., Thi, C.M., Cao, Y., Nogami, M.: Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol. 15(12), 10091 (2015)CrossRefGoogle Scholar
  15. 15.
    Bjørk, R., Bahl, C.R.H.: Demagnetization factor for a powder of randomly packed spherical particles. Appl. Phys. Lett. 103(10), 102403 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Majetich, S.A., Sachan, M.: Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J. Phys. D: Appl. Phys. 39(21), R407 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Pardavi-Horvath, M.: Interaction effects in magnetic nanostructures. Phys. Status Solidi A 211(5), 1030 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Stamps, R.L., et al.: The 2014 magnetism roadmap. J. Phys. D: Appl. Phys. 47, 333001 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Aslibeiki, B., Kameli, P., Salamati, H.: The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles. J. Appl. Phys. 119(6), 063901 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Pfau, B., Günther, C.M., Guehrs, E., Hauet, T., Hennen, T., Eisebitt, S., Hellwig, O.: Influence of stray fields on the switching-field distribution for bit-patterned media based on pre-patterned substrates. Appl. Phys. Lett. 105(13), 132407 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Nisoli, C., Moessner, R., Schiffer, P.: Artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D: Appl. Phys. 42(1), 013001 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Hillion, A., Tamion, A., Tournus, F., Albin, C., Dupuis, V.: From vanishing interaction to superferromagnetic dimerization: experimental determination of interaction lengths for embedded Co clusters. Phys. Rev. B 95, 134446 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Landi, G.T.: Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89, 014403 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Salas, G., Camarero, J., Cabrera, D., Takacs, H., Varela, M., Ludwig, R., Dähring, H., Hilger, I., Miranda, R., Morales, M.d.P., Teran, F.J.: Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J. Phys. Chem. C 118(34), 19985 (2014)CrossRefGoogle Scholar
  26. 26.
    Ruta, S., Chantrell, R., Hovorka, O.: Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci. Rep. 5, 9090 EP (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Coral, D.F., Mendoza Zélis, P., Marciello, M., Morales, M.d.P., Craievich, A., Sánchez, F.H., Fernández van Raap, M.B.: Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32(5), 1201 (2016)CrossRefGoogle Scholar
  28. 28.
    Orozco-Henao, J.M., Coral, D.F., Muraca, D., Moscoso-Londoño, O., Mendoza Zélis, P., Fernandez van Raap, M.B., Sharma, S.K., Pirota, K.R., Knobel, M.: Effects of nanostructure and dipolar interactions on magnetohyperthermia in iron oxide nanoparticles. J. Phys. Chem. C 120(23), 12796 (2016)CrossRefGoogle Scholar
  29. 29.
    Henkel, O.: Remanenzverhalten und wechselwirkungen in hartmagnetischen teilchenkollektiven. Phys. Status Solidi B 7(3), 919 (1964)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Kelly, P.E., O’Grady, K., Mayo, P.I., Chantrell, R.W.: Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. Magn. 25(5), 3881 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    Veitch, R.J.: Anhysteretic susceptibility and static magnetic properties of interacting small particles. IEEE Trans. Magn. 26(5), 1876 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    Harrell, J.W., Richards, D., Parker, M.R.: Delta-h plot evaluation of remanence behavior in barium ferrite tapes and disks. J. Appl. Phys. 73(10), 6722 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Béron, F., Clime, L., Ciureanu, M., Ménard, D., Cochrane, R.W., Yelon, A.: Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J. Nanosci. Nanotechnol. 8 (6), 2944 (2008)CrossRefGoogle Scholar
  34. 34.
    Béron, F., Ménard, D., Yelon, A.: First-order reversal curve diagrams of magnetic entities with mean interaction field: a physical analysis perspective. J. Appl. Phys. 103(7), 07D908 (2008)CrossRefGoogle Scholar
  35. 35.
    Stancu, A., Pike, C., Stoleriu, L., Postolache, P., Cimpoesu, D.: Micromagnetic and preisach analysis of the first order reversal curves (forc) diagram. J. Appl. Phys. 93(10), 6620 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Dobrotă, C.I., Stancu, A.: What does a first-order reversal curve diagram really mean? a study case: array of ferromagnetic nanowires. J. Appl. Phys. 113(4), 043928 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Gilbert, D.A., Zimanyi, G.T., Dumas, R.K., Winklhofer, M., Gomez, A., Eibagi, N., Vicent, J.L., Liu, K.: Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci. Rep. 4, 4204 EP (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, T., Wang, Y., Fu, Y., Hasegawa, T., Oshima, H., Itoh, K., Nishio, K., Masuda, H., Li, F.S., Saito, H., Ishio, S.: Magnetic behavior in an ordered Co nanorod array. Nanotechnology 19(45), 455703 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Encinas-Oropesa, A., Demand, M., Piraux, L., Huynen, I., Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    De La Torre Medina, J., Piraux, L., Olais Govea, J.M., Encinas, A.: Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires. Phys. Rev. B 81, 144411 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Moya, C., Iglesias, Ó., Batlle, X., Labarta, A.: Quantification of dipolar interactions in Fe3−xO4 nanoparticles. J. Phys. Chem. C 119(42), 24142 (2015)CrossRefGoogle Scholar
  42. 42.
    Dupuis, V., Khadra, G., Hillion, A., Tamion, A., Tuaillon-Combes, J., Bardotti, L., Tournus, F.: Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys. Chem. Chem. Phys. 17, 27996 (2015)CrossRefGoogle Scholar
  43. 43.
    Blanco-Andujar, C., Ortega, D., Southern, P., Pankhurst, Q.A., Thanh, N.T.K.: High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7, 1768 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Panagiotopoulos, I., Fang, W., Aït-Atmane, K., Piquemal, J.Y., Viau, G., Dalmas, F., Boué, F., Ott, F.: Low dipolar interactions in dense aggregates of aligned magnetic nanowires. J. Appl. Phys. 114(23), 233909 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Corradi, A.R., Wohlfarth, E.P.: Influence of densification on the remanence, the coercivities and the interaction field of elongated γ Fe2O3 powders. IEEE Trans. Magn. 14, 861 (1978)ADSCrossRefGoogle Scholar
  46. 46.
    Álvarez, N., Leva, E., Valente, R., Mansilla, M., Gómez, J., Milano, J., Butera, A.: Correlation between magnetic interactions and domain structure in A1 FePt ferromagnetic thin films. J. Appl. Phys. 115, 083907 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Martínez-Huerta, J.M., Medina, J.D.L.T., Piraux, L., Encinas, A.: Self consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution. J. Appl. Phys. 111(8), 083914 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Piraux, L., Encinas, A., Vila, L., Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Darques, M., Elhoussine, F., Michotte, S.: Magnetic and superconducting nanowires. J. Nanosci. Nanotechnol. 5(3), 372 (2005)CrossRefGoogle Scholar
  49. 49.
    Wohlfarth, E.P.: Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29(3), 595 (1958)ADSCrossRefGoogle Scholar
  50. 50.
    Tournus, F., Tamion, A., Hillion, A., Dupuis, V.: Anisotropy evolution of nanoparticles under annealing: benefits of isothermal remanent magnetization simulation. J. Magn. Magn. Mater. 419, 1 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Peddis, D., Cannas, C., Piccaluga, G., Agostinelli, E., Fiorani, D.: Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe2O4 nanoparticles. Nanotechnology 21, 125705 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Martínez-Huerta, J.M., Medina, J.D.L.T., Piraux, L., Encinas, A.: Configuration dependent demagnetizing field in assemblies of interacting magnetic particles. J. Phys. Condens. Matter 25(22), 226003 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15(20), R841 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elsie Araujo
    • 1
  • Juan Manuel Martínez-Huerta
    • 1
  • Luc Piraux
    • 2
  • Armando Encinas
    • 1
  1. 1.División de Materiales AvanzadosInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  2. 2.Institute of Condensed Matter and NanosciencesUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations