Advertisement

Effect of Intrinsic Defects on Electronic and Magnetic Properties in Tm-Doped GaN: First-Principles Calculations

  • Y. R. Li
  • H. L. Su
  • Z. T. Hou
  • H. Y. Liu
  • C. C. Liu
  • Y. Li
Original Paper
  • 34 Downloads

Abstract

Based on the density functional theory, we investigate the electronic and magnetic properties of various types of defect complexes formed by dopant Tm and Ga vacancies, N vacancies, or O interstitial in Tm-doped GaN. Formation energies are first calculated for all defect complexes to assess their stability. The single Tm dopant is found to introduce the local magnetic moment of about 2 μB/Tm in GaN. However, in the case of defect complexes, the magnetic moments of Tm can be suppressed by the existence of Ga vacancies around it, while the presence of N vacancies or O interstitial does not influence the magnetic moment of Tm. In addition, each Ga vacancy in the neutral charge state induces the local magnetic moment of about 2.1 μB and one octahedral O interstitial can lead to the local moment of about 1.6 μB.

Keywords

Tm-doped GaN Intrinsic defects Electronic structure First-principles method 

Notes

Funding Information

This work is supported by the Scientific Research Project of Hebei Province High Level Talents in Colleges and Universities, China (Grant No. GCC2014023).

References

  1. 1.
    O’Donnell, K.P., Dierolf, V.: Rare earth doped III-Nitrides for optoelectronic and spintronic applications. Springer, Berlin (2010)CrossRefGoogle Scholar
  2. 2.
    Dierolf, V., Ferguson, L., Zavada, J. M.: Rare earth and transition metal doping of semiconductor materials synthesis, magnetic properties and room temperature spintronics. Woodhead Publishing, Sawston (2016)Google Scholar
  3. 3.
    Birkhahn, R., Garter, M., Steckl, A. J.: Appl. Phys. Lett. 74, 2161 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Heikenfeld, J., Garter, M., Lee, D. S., Birkhahn, R., Steckl, A. J.: Appl. Phys. Lett. 75, 1189 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Steckl, A. J., Garter, M., Lee, D. S., Heikenfeld, J., Birkhahn, R.: Appl. Phys. Lett. 75, 2184 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Lee, D. S., Steckl, A. J.: Appl. Phys. Lett. 83, 2094 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Hömmerich, U., Nyein, E. E., Lee, D. S., et al.: Appl. Phys. Lett. 83, 4556 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Kim, J. H., Davidson, M. R., Holloway, P. H.: Appl. Phys. Lett. 83, 4746 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Hömmerich, U., Nyein, E. E., Lee, D. S., Heikenfeld, J., Steckl, A. J., Zavada, J. M.: Mater. Sci. Eng. B 105, 91 (2003)CrossRefGoogle Scholar
  10. 10.
    Liu, Q. L., Bando, Y., Xu, F. F.: Appl. Phys. Lett. 85, 4890 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    O’Donnell, K. P., Hourahine, B.: Eur. Phys. J. Appl. Phys 36, 91 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Dhar, S., Péres, L., Brandt, O., Trampert, A., Ploog, K. H., Keller, J., Beschoten, B.: Phys. Rev. B 72, 245203 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V., Ploog, K.: Phys. Rev. Letts. 94, 037205 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Nepal, N., Bedair, S. M., El-Masry, N. A., et al.: Appl. Phys. Lett 91, 222503 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Goumri-Said, S., Kanoun, M. B.: J. Phys. D: Appl. Phys. 41, 035004 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Sofer, Z., Sedmidubsk, D., Moram, M., Mackov, A., Maryko, M., Hejtmnek, J., Buchal, C., Hardtdegen, H., Vclav, M., et al.: Thin Solid Films 519, 6120 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Cao, X. G., Liu, C., Yin, C. H., Tao, D. Y., Yang, C., Man, B. Y.: Sci. Eng. B 178, 349 (2013)CrossRefGoogle Scholar
  18. 18.
    Li, Y. C., Yu, S., Meng, X. Q., Liu, Y. H., Zhao, Y. H., Liu, F. Q., Wang, Z. G.: J. Phys. D: Appl. Phys. 46, 215101 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Lo, F. Y., Guo, J. Y., Huang, C. D., Chou, K. C., Liu, H. L., et al.: Curr. Appl. Phys. 14, S7 (2014)CrossRefGoogle Scholar
  20. 20.
    Dhar, S., Kammermeier, T., Ney, A., Pérez, L., Ploog, K. H., Melnikov, A., Wieck, A. D.: Appl. Phys. Lett. 89, 062503 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Gohda, Y., Oshiyama, A.: Phys. Rev. B 78, 161201 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, L., Yu, P. Y., Ma, Z. X., Mao, S. S.: Phys. Rev. Lett.s 100, 127203 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Thiess, A., Dederichs, P. H., Zeller, R., Blügel, S., Lambrecht, W. R. L.: Phys. Rev. B 86(R), 180401 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Khaderbad, M. A., Dhar, S., Pérez, L., Ploog, K. H., Melnikov, A., Wieck, A. D.: Appl. Phys. Lett. 91, 072514 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Mitra, C., Lambrecht, W. R. L.: Phys. Rev. B 80(R), 081202 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Thiess, A., Blügel, S., Dederichs, P. H., Zeller, R., Lambrecht, W. R. L.: Phys. Rev. B 92, 104418 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Maryško, M., Hejtmánek, J., Laguta, V., Sofer, Z., Sedmidubský, D., et al.: J. Appl. Phys. 117, 17B907 (2015)CrossRefGoogle Scholar
  28. 28.
    Belhachi, S., Lazreg, A., Dridi, Z., et al.: J. Supercond. Nov. Magn. (2017)Google Scholar
  29. 29.
    Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Blöchl, P.: Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Kresse, G., Joubert, J.: Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Larson, P., Lambrecht, W. R., Chantis, A., et al.: Phys. Rev. B 75, 045114 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Van de Walle, C. G., Janotti, A.: Phys. Status Solid B 248, 19 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Bougrov, V., Levinshtein, M. E., Rumyantsev, S. L., Zubrilov, A.: Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. In: Levinshtein, M. E., Rumyantsev, S. L., Shur, M. (eds.) , pp 1–30. Wiley, New York (2001)Google Scholar
  35. 35.
    Ney, A., Kammermeier, T., Manuel, E., Ney, V., et al.: Appl. Phys. Lett. 90, 252515 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Sanna, S., Schmid, W., Frauenheim, T., Gerstmann, U.: Phys. Rev. B 80, 104120 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Li, Q. Q., Hao, Q. Y., Li, Y., Liu, G. D.: Comp. Mater. Sci 72, 32 (2013)CrossRefGoogle Scholar
  38. 38.
    Li, Q. Q., Hao, Q. Y., Li, Y., Liu, G. D.: Acta Phys. Sina. 62, 017103 (2013)Google Scholar
  39. 39.
    Hou, Z. T., Li, Y. R., Liu, H. Y., Dai, X. F., Liu, G. D., Liu, C. C., Li, Y.: Acta Phys. Sina. 65, 127102 (2016)Google Scholar
  40. 40.
    Li, Y., Hou, Z. T., Li, Y. R., Su, H. L., Liu, C. C., Wang, M.: J. Appl. Phys 122, 023901 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Filhol, J. S., Jones, R., Shaw, M. J., Briddon, P. R.: Appl. Phys. Lett 84, 2841 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Mitchell, B., Timmerman, D., Poplawsky, J., Zhu, W., Lee, D., Wakamatsu, R., et al.: Sci. Rep. 6, 18808 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. R. Li
    • 1
  • H. L. Su
    • 1
  • Z. T. Hou
    • 1
  • H. Y. Liu
    • 1
  • C. C. Liu
    • 1
  • Y. Li
    • 1
  1. 1.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations