Investigation of Transport Properties of Some Superconductor Nickel-Based Antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb)

  • Y. Benmalem
  • A. Abbad
  • W. Benstaali
  • H. A. Bentounes
  • T. Seddik
  • T. Lantri
Original Paper


We report, in this work, a theoretical study of electronic and transport (thermoelectric) properties of some superconductor nickel-based antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb) using first-principles calculations with the full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory (DFT) as implemented in the WIEN2k package. Electronic properties are calculated and show that the studied materials are of metallic type which is in good agreement with experimental data. The Seebeck coefficient, thermal conductivity, electrical conductivity and figure of merit were reported. The results obtained show that the zinc (Zn) and silver (Ag) materials are characterized by a high value of the figure of merit at room temperature (300 K) which is respectively 0.86 and 1.02 in a p-type region. In the case of the transition metals, the maximum values of S increase in going from the Pt atom to the Zn atom and then decrease for the Cd atom. Furthermore, the Wiedemann–Franz law which states that the ratio of thermal to electrical conductivity for metals is constant is well verified in this work. The electric conductivity values are almost invariant with the temperature except for the case of MgNNi3 and AgNNi3 compounds in which it increases with T slightly. So, the superconducting materials based on silver and zinc are the best for the thermoelectric applications at room temperature due to the very important value of the factor of merit and the Seebeck coefficient obtained.


Antiperovskites Figure of merit Seebeck coefficient Thermal conductivity Electric conductivity 


  1. 1.
    Xi, H., Luo, L., Fraisse, G.: Renew. Sustain. Energy Rev. 11(5), 923 (2007)CrossRefGoogle Scholar
  2. 2.
    Budak, S., Alim, M.A., Bhattacharjee, S., Muntele, C.: Phys. Procedia 66, 321 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Riffat, S.B., Xiaoli, M.: Appl. Therm. Eng. 23, 913 (2003)CrossRefGoogle Scholar
  4. 4.
    Budak, S., Guner, S., Minamisawa, R.A., Muntele, C.I., Ila, D.: Appl. Surf. Sci. 310, 226 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Sahin, A.Z., Yilbas, B.S.: Energ. Conver. Manage. 65, 26 (2013)CrossRefGoogle Scholar
  6. 6.
    Bell, L.E.: Science 321, 1457 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Qu, X., Wang, W., Liu, W., Yang, Z., Duan, X., Jia, D.: Mater J. Chem. Phys. 129, 331 (2011)CrossRefGoogle Scholar
  8. 8.
    Rabina, O., Lin, Y.M., Dresselhaus, M.S.: Appl. Phys. Lett. 79, 81 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Takeuchi, T.: Mater. Trans. 50, 2359 (2009)CrossRefGoogle Scholar
  10. 10.
    Aliabad, H.A.R., Ghazanfari, M., Ahmad, I., Saeed, M.A.: Comput. Mater. Sci. 65, 509 (2012)CrossRefGoogle Scholar
  11. 11.
    Blake, N.P., Latturner, S., Bryan, J.D., Stucky, G.D., Metiu, H.: J. Chem. Phys. 115, 8060 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Gupta, D.C., Ghosh, S.: J. Supercond. Novel Magn., 1 (2017)Google Scholar
  13. 13.
    Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Science 297, 2229 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Matsubara, I., Funahashi, R., Takeuchi, T., Sodeoka, S.: Appl. Phys. Lett. 90, 462 (2001)Google Scholar
  15. 15.
    Shin, W., Murayama, N., Ikeda, K., Sago, S.: J. Power Sources 103, 80 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Terasaki, I., Sasago, Y., Uchinokura, K.: Phys. Rev. B 56, 12685 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Maignan, A., Wang, L.B., Hebert, S., Pelloquin, D., Raveau, B.: Chem. Mater. 14, 1231 (2002)CrossRefGoogle Scholar
  18. 18.
    He, T., Huang, Q., Ramirez, A.P., Wang, Y., Regan, K.A., Rogado, N., Hayward, M.A., Haas, M.K., Slusky, J.S., Inumara, K., Zandbergen, H.W., Ong, N.P., Cava, R.J.: Nature 411, 54 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Bilal, M., Ahmad, I., Rahnamaye-Aliabad, H. A., Jalali-Asadabadi, S.: Comput. Mater. Sci. 85, 310 (2014)CrossRefGoogle Scholar
  20. 20.
    Engel, E., Vosko, S.H.: Phys. Rev. B 47, 13164 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    Kohn, W., Sham, L.: Phys. Rev. B 140, A1133 (1965)ADSCrossRefGoogle Scholar
  23. 23.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Physica B 405, 4615 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Phys. Rev. B 68, 125210 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Noda, Y., Kon, H., Furukawa, Y., Otsuka, N., Nishida, I.A., Masumoto, K.: Materials transactions. JIM 33, 845 (1992)Google Scholar
  28. 28.
    Slack, G.A.: Thermoelectric handbook. Edition. Rowe DM. Chemical Rubber company. Boca Raton, 407 (1995)Google Scholar
  29. 29.
    Rabin, O., Yu-Ming, L., Dresselhaus, M.S.: Appl. Phys. Lett. 79, 81 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Walia, S., Weber, R., Balendhran, S., Yao, D., Abrahamson, J.T., Zhuiykov, S., Bhaskaran, M., Sriram, S., Strano, M.S., Kalantar-zadeh, K.: Chem. Commun. 48, 7462 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. Benmalem
    • 1
  • A. Abbad
    • 1
  • W. Benstaali
    • 1
  • H. A. Bentounes
    • 2
  • T. Seddik
    • 3
  • T. Lantri
    • 1
  1. 1.Laboratory of Technology and Solids PropertiesAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  2. 2.Abdelhamid Ibn Badis UniversityMostaganemAlgeria
  3. 3.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria

Personalised recommendations