Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 11, pp 3459–3464 | Cite as

Influence of Critical Current Density Distribution on Transport AC Losses in Superconducting Wire in a DC Magnetic Field

  • Xing-liang SuEmail author
  • Teng Ye
  • Leilei Fan
  • Shen Wang
  • Li-ting Xiong
Original Paper
  • 90 Downloads

Abstract

In typical application-like conditions, the inhomogeneous distribution and anisotropy of critical current density must be considered simultaneously in transport AC loss calculation. In this paper, we derive the analytical formulas of transport AC losses for high-temperature superconductors (HTSs) with linear and quadratic distribution of critical current density under applied DC magnetic field. The influence of the inhomogeneous distribution and anisotropy of critical current density has been analyzed. The results show that the impact of the distribution form on transport AC loss is more obvious under applied DC magnetic field. And the influence of applied DC magnetic field will increase as the distribution form becomes steeper.

Keywords

Transport AC losses Inhomogeneous critical current density DC applied magnetic field 

Notes

Funding Information

This work was supported by the Fund of Natural Science Foundation of China (Grant No. 11402140, No. 11404197) and Natural Science Foundation of Shanxi (Grant No. 2015021016, No. 201701D221006)

References

  1. 1.
    Grili, F., Pardo, E., Stenvall, A., Nguyen, D.N., Yuan, W., Gömöry, F.: Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Trans. Appl. Supercond. 24, 8200433 (2014)Google Scholar
  2. 2.
    Hull, J.R.: Applications of high-temperature superconductors in power technology. Rep. Prog. Phys. 66, 1865–1886 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    Clem, J.R.: Field and current distributions and ac losses in superconducting strips. Phys. Rev. B 80, 184517 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Norris, W.T.: Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets. J. Phys. D: Appl. Phys. 3, 489 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    Shantsev, D.V., Galperin, Y.M., Johansen, T.H.: Thin superconducting disk with B-dependent Jc: flux and current distributions. Phys. Rev. B 60, 13112–13118 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Zhou, Y.H., Yang, X.B.: Numerical simulations of thermomagnetic instability in high-Tc superconductors: dependence on sweep rate and ambient temperature. Phys. Rev. B 74, 054507 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Brandt, E.H., Indenbom, M.: Type-II-superconductor strip with current in a perpendicular magnetic field. Phys. Rev. B 48, 12893 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Xue, C., He, A., Yong, H.D., Zhou, Y.H.: Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field. AIP Adv. 3, 122110 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Zeldov, E., Clem, J.R., McElfresh, M., Darwin, M.: Magnetization and transport currents in thin superconducting films. Phys. Rev. B 49, 9802 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, X.X., Huang, C.G., Yong, H.D., Zhou, Y.H.: Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current. AIP Adv. 5, 117139 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Xia, J., Zhou, Y.H.: Numerical simulations of electromagnetic behavior and AC loss in rectangular bulk superconductor with an elliptical flaw under AC magnetic fields. Cryogenics 69, 1–9 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Grasso, G., Hensel, B., Jeremie, A., Flükiger, R.: Distribution of the transport critical current density in Ag sheathed (Bi, Pb)2Sr2Ca2Cu3Ox tapes produced by rolling. Physica C 241, 45–52 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Jiang, Z., Amemiya, N., Maruyama, O., Shiohara, Y.: Critical current density distribution and magnetization loss in YBCO coated conductors. Physica C 463–465, 790–794 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Gömöry, F., Gherardi, L.: Transport AC losses in round superconducting wire consisting of two concentric shells with different critical current density. Physica C 280, 151 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Zhao, Y. F., Zhou, Y. H.: Transport AC losses in superconducting cylinder with critical current density distribution along radius. J. Low Temp. Phys. 156, 30–37 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Kajikawa, K., Mawatari, Y., Hayashi, T., Funaki, K.: AC loss evaluation of thin superconducting wires with critical current distribution along width. Supercond. Sci. Technol. 17, 555–563 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Tsukamoto, O.: AC losses in a type II superconductor strip with inhomogeneous critical current distribution. Supercond. Sci. Technol. 18, 596–605 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Huang, C.G., Yong, H.D., Zhou, Y.H.: Influence of critical current density distribution on transport AC losses for round superconducting wire. J. Low Temp. Phys. 172, 59–69 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Tsukamoto, O., Miyagi, D.: Study on relation between AC characteristics and critical current distribution in YBCO tape. IEEE Trans. Appl. Supercond. 10, 1208 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Miyagi, D., Tsukamoto, O.: Characteristics of AC transport current losses in YBCO coated conductors and their dependence on distributions of critical current density in the conductors. IEEE Trans. Appl. Supercond. 12, 1628 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Sunwong, P., Higgins, J. S., Hampshire, D. P.: Angular, temperature, and strain dependencies of the critical current of DI-BSCCO tapes in high magnetic fields. IEEE Trans. Appl. Supercond. 21, 2840–2844 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Li, J., Lu, Y.Y., Li, X., Tang, J.J., Shen, B.Y., Geng, J.Z., Li, C., Coombs, T.: The numerical study on ac loss and thermal behavior in bulk high-temperature superconductors. J. Supercond. Nov. Magn. 30, 2445–2449 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhou, W., Fang, J., Fang, X.Y., Liu, B., Liu, Y.C.: Magnetic field angular dependence of magnetization loss in ReBCO superconducting tapes. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4265-4 CrossRefGoogle Scholar
  25. 25.
    Clem, J.R.: Anisotropy and two-dimensional behaviour in the high-temperature superconductors. Supercond. Sci. Technol. 11, 909–914 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, G.M., Lin, L.Z., Xiao, L.Y., Yu, Y.J.: A theoretical model for the angular dependence of the critical current of BSCCO/Ag tapes. Physica C 390, 321–324 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Su, X.L., Xiong, L.T., Gao, Y.W., Zhou, Y.H.: Angular dependence of transport AC losses in superconducting wire with position-dependent critical current density in a DC magnetic field. J. Low Temp. Phys. 172, 154–161 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Electronics EngineeringShanxi UniversityTaiyuanChina
  2. 2.Key Laboratory of Mechanics on Disaster and Environment in Western ChinaThe Ministry of Education of ChinaLanzhouChina

Personalised recommendations