Advertisement

Enhanced Magnetic Permeability in Ni0.55−yCo y Zn0.35Mg0.10Fe2O4 Synthesized by Sol-Gel Method

  • D. R. S. Gangaswamy
  • G. S. V. R. K. Choudary
  • M. Chaitanya Varma
  • S. Bharadwaj
  • K. H. Rao
Original Paper

Abstract

Growth in permeability with increasing cobalt content in Ni-Zn ferrite is a rare phenomenon. The rise in magnetic anisotropy associated with the cobalt, in general, suppresses the relative permeability of the material. However, cobalt substituted nickel-zinc ferrite of composition, Ni0.55−yCo y Zn0.35Mg0.10Fe2O4 (y= 0.00, 0.04, 0.08, 0.12, 0.16, 0.20), synthesized by sol-gel method, showed an enhanced relative initial permeability from 100 to 220 in the frequency range 60 Hz to 50 MHz with increasing cobalt content. The factors causing the permeability increase have been discussed in terms of the observed variations in particle size, saturation magnetization, and Curie temperature. The magnetization process under the influence of cobalt has been illustrated in detail with the help of dM/dH versus magnetization curves.

Keywords

Ferrite Initial permeability Grain size Saturation magnetization Curie temperature 

Notes

Acknowledgments

One of the authors, Gangaswamy, is thankful to the Advanced Analytical Laboratory of Andhra University for rendering XRD and SEM facilities; Dr. M. SivaKumar, IIT Kanpur, for providing the room-temperature VSM facility; and NSTL-Visakhapatnam for providing dielectric measurements.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Mahesh Kumar, A., Chaitanya Varma, M., Dube, C.L., Rao, K.H., Kashyap, S.C.: Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J. Magn. Magn. Mater 320, 1995–2000 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–92 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Bharadwaj, S., Ramesh, T., Murthy, S.R.: Fabrication of microinductor using nanocrystalline NiCuZn ferrites. J. Electroceram. 31, 81–87 (2013)CrossRefGoogle Scholar
  4. 4.
    Rezlescu, E., Sachelarie, L., Popa, P.D., Rezlescu, N.: Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE Trans. Magn. 36, 3962–3967 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Zheng Y.L., Xu G.L., Lai Z.Y.: J. Func. Mater. 38, 730–733 (2007)Google Scholar
  6. 6.
    Ganga Swamy, D.R.S., Chaitanya Varma, M., Bharadwaj, S., Sambasiva Rao, K., Rao, K.H.: Effect of magnesium on relaxation frequency of Ni–Zn nanoferrites. Int. J. Mod. Phys. B 29, 1550218 (2015). [10 pages]ADSCrossRefGoogle Scholar
  7. 7.
    Gangaswamy, D.R.S., Chaitanya Varma, M., Bharadwaj, S., Sambasiva Rao, K., Rao, K.H.: Comparison study of structural and magnetic properties of magnesium-substituted nickel–zinc ferrites synthesized by solid-state and sol–gel routes. J. Supercond. Nov. Magn. 28, 3599 (2015)CrossRefGoogle Scholar
  8. 8.
    Chaitanya Varma, M., Mahesh kumar, A., Rao, K.H.: Enhanced magnetization in cobalt substituted Ni–Zn nanoferrites. Int. J. Nanosci. 10, 571–576 (2011)CrossRefGoogle Scholar
  9. 9.
    Ghodake, J.S., Rahul, C., Kambale, T.J., Shinde, P.K., Maskar, S.S.: Suryavanshi, Magnetic and microwave absorbing properties of Co2 + substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater. 401, 938–942 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Chaitanya Varma, M., Mahesh kumar, A., Choudary, G.S.V.R.K., Rao, K.H.: Effect of particle size on saturation magnetization and magnetic anisotropy of Ni0.65Zn0.35Fe2O4 nanoparticles. Int. J. Nanosci 11, 1240003 (2012). [6 pages]CrossRefGoogle Scholar
  11. 11.
    Soohoo, R.: Theory and application of ferrites, p P109. Princeton Hall, Englewood Cliffs (1960)Google Scholar
  12. 12.
    Hossain, K.M.A., Mahmud, S.T., Seki, M., Kawai, T., Tabata, H.: Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J. Mag. Mag. Mater. 312, 210–219 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Patange, S.M., Shirsath, S.E., Jangam, G.S., Lohar, K.S., Jadhav, S.S., Jadhav, K.M.: Rietveld structure refinement, cation distribution and magnetic properties of Al3 + substituted NiFe2O4 nanoparticles. J. Appl. Phys. 109, 053909 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Raghasudha, R.M., Ravinder, D., Veerasomaiah, P., Jadhav, K.M., Hashim, M., Bhatt, P., Meena, S.S: Electrical resistivity and Mössbauer studies of Cr substituted Co nano ferrites. J. Alloys Comp. 694, 366–374 (2017)CrossRefGoogle Scholar
  15. 15.
    Saffari, F., Kameli, P., Rahimi, M., Ahmadvand, H., Salamati, H.: Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2−xO4 ferrite nanoparticles. Cer. Inter. 41, 7352–7358 (2015)CrossRefGoogle Scholar
  16. 16.
    Maaz, K., Arif Mumtaz, S.K.: Hasanain, Abdullah Ceylan. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struc. 1076, 55–62 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Chandana Rath, S., Anand, R.P., Das, K.K., Sahu, S.D., Kulkarni, S.K.D., Mishra, N.C.: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite. J. Appl. Phys. 91, 2211–2215 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Neel, L.: Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137 (1948)CrossRefGoogle Scholar
  20. 20.
    Verwey, E.J., Heilmann, E.L.: Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J. Chem. Phys. 15, 174–80 (1947)ADSCrossRefGoogle Scholar
  21. 21.
    Peirron, H., et al.: J. Phys. Conden. Mater. 19, 346219 (2007)CrossRefGoogle Scholar
  22. 22.
    Khan, K., Maqsood, A., Anis-ur-Rehman, M., Malik, M.A., Akram, M.: Structural, dielectric, and magnetic characterization of nanocrystalline Ni–Co ferrites. J. Supercond. Nov. Magn. 25, 2707–2711 (2012)CrossRefGoogle Scholar
  23. 23.
    Sun, G.-L., Li, J.-B., Sun, J.-J., Yang, X.-Z.: The influences of Zn2 + and some rare-earth ions on the magnetic properties of nickel–zinc ferrites. J. Magn. Magn. Mater. 281, 173–177 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Li, L.V., Zhou, J.-P., Liu, Q., Zhu, G., Chen, X.-Z., Bian, X.-B., Liu, P.: Grain size effect on the dielectric and magnetic properties of NiFe2O4 ceramics. Physica E 43, 1798–1803 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Franco, A. Jr, Silva, F.C.E.: High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett 96, 172505 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Burke, J.E., Kingery, W.D.: Ceramic fabrication process. Wiley, New York (1958)Google Scholar
  27. 27.
    Melikhov, Y., Snyder, J.E., Jiles, D.C., Ring, A.P., Paulsen, J.A., Lo, C.C.H., Dennis, K.W.: Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite. J. Appl. Phys. 99, 08R102 (2006)CrossRefGoogle Scholar
  28. 28.
    Globus, A.: I.—Magnetization mechanisms some physical considerations about the domain wall size theory of magnetization mechanisms. J. Phys. Colloques 38(C1), 1–15 (1977)Google Scholar
  29. 29.
    Guyot, M., Globus, A.: Determination of the domain wall energy and the exchange constant from hysteresis in ferrimagnetic polycrystals. J. Phys. Colloques 38(C1), 157–162 (1977)CrossRefGoogle Scholar
  30. 30.
    Goldman, A.: Handbook of modern ferromagnetic materials. Kluwer Acad. Pub, Boston (1999)CrossRefGoogle Scholar
  31. 31.
    Mangalaraja, R.V., Manohar, P., Gnanam, F.D.: Electrical and magnetic properties of Ni0. 8Zn0. 2Fe2O4/silica composite prepared by sol-gel method. J. Mater. Sci. 39, 2037–2042 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. R. S. Gangaswamy
    • 1
  • G. S. V. R. K. Choudary
    • 2
  • M. Chaitanya Varma
    • 3
  • S. Bharadwaj
    • 3
  • K. H. Rao
    • 4
  1. 1.Department of PhysicsGovernment PolytechnicAmudalavalasaIndia
  2. 2.Department of PhysicsBhavan’s Vivekananda CollegeSainikpuri, SecunderabadIndia
  3. 3.Department of PhysicsGIT Gitam UniversityVisakhapatnamIndia
  4. 4.RGU-IIIT NuzvidNuzividuIndia

Personalised recommendations