Skip to main content
Log in

Effect of Pressure on the Electronic, Magnetic, and Optical Properties of the In0.75Cr0.25P Compound

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the density functional theory (DFT) approach and full-potential linearized augmented plane waves (FP-LAPW) method, some of the electronic (density of states, band structure, and Fermi surfaces), magnetic (total and local magnetic moments, spin polarization, exchange constants), and optical properties (dielectric function, energy loss function, and refractive index) were investigated. The GGA + U approximation was used for the exchange-correlation term. The effect of hydrostatic pressure up to 20 GP has been studied on these properties. The results show that the In0.75Cr0.25P compound is a half metal with 100% spin polarization at the Fermi level and the increment of pressure does not change its half-metallic behavior. The half-metal gap achieved for this compound is variable between 1.38 and 1.5 eV. The interaction between Cr and P atoms in this compound is an anti-ferromagnetic type. It was observed that the total magnetic moment for this compound is about 3 μB. Local magnetic moments change with increasing pressure, but the total magnetic moment remains unaffected by increasing the pressure. Calculations of the optical properties of the In0.75Cr0.25P compound showed that the dominant mechanism for the low-energy photons is due to the induced free carriers of the Cr atom, and the optical properties of this compound, in particular the refractive index in the visible region, change with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985)

    Article  ADS  Google Scholar 

  2. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  3. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  4. Furdyna, J.K.: Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988)

    Article  ADS  Google Scholar 

  5. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  6. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  ADS  Google Scholar 

  7. Rashba, E.I.: Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Phys. Solid State 2, 1109–1122 (1960)

    Google Scholar 

  8. Boutaleb, M., Tadjer, A., Doumi, B., Djedid, A., Yakoubi, A., Dahmane, F., Abbar, B.: First-principle investigations of structural, electronic, and half-metallic ferromagnetic properties in In1−xTMxP(TM = Cr,Mn). J. Supercond. Nov. Magn. 27, 1603–1614 (2014)

    Article  Google Scholar 

  9. Liu, C., Yun, F., Morkoc, H.: Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci. Mater. Electron. 16, 555 (2005)

    Article  Google Scholar 

  10. Yao, G., Fan, G., Zheng, S., Ma, J., Chen, J., Zhou, D., Li, S., Zhang, Y., Su, S.: First-principles analysis on V-doped GaN. Opt. Mater. 34, 1593–1597 (2012)

    Article  ADS  Google Scholar 

  11. Dahmane, F., Tadjer, A., Doumi, B., Mesri, D., Aourag, H.: Structural, electronic and magnetic properties of zinc-blende Ga1−xTMxN(TM = Cr,Mn,Fe,V). J. Supercond. Nov. Magn. 26, 3339–3348 (2013)

    Article  Google Scholar 

  12. Ahmad, I., Amin, B.: Robust half-metallicity in Ga1−xMnxP and Ga1−xMnxAs. Comput. Mater. Sci. 68, 55–60 (2013)

    Article  Google Scholar 

  13. Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit. J. Alloys Compd. 536, 214–218 (2012)

    Article  Google Scholar 

  14. Sharma, V., Manchanda, P., Sahota, P.K., Skomski, R., Kashyap, A.: Interatomic exchange in Mn-doped III–V semiconductors. J. Magn. Magn. Mater. 324, 786–791 (2012)

    Article  ADS  Google Scholar 

  15. Doumi, B., Tadjer, A., Dahmane, F., Mesri, D., Aourag, H.: Investigations of structural, electronic, and half-metallic ferromagnetic properties in (Al, Ga, In)1−xMxN (M = Fe, Mn) diluted magnetic semiconductors. J. Supercond. Nov. Magn. 26, 515–525 (2013)

    Article  Google Scholar 

  16. Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Variation of half metallicity and magnetism of Cd1−xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit. J. Magn. Magn. Mater. 331, 1–6 (2013)

    Article  ADS  Google Scholar 

  17. Bourouis, C., Meddour, A.: First-principles study of structural, electronic and magnetic properties in Cd1−xFexS diluted magnetic semiconductors. J. Magn. Magn. Mater. 324, 1040–1045 (2012)

    Article  ADS  Google Scholar 

  18. Doumi, B., Tadjer, A., Dahmane, F., Djedid, A., Yakoubi, A., Barkat, Y., Ould Kada, M., Sayede, A., Hamada, L.: First-principles investigation of half-metallic ferromagnetism in V-doped BeS, BeSe, and BeTe. J. Supercond. Nov. Magn. 27, 293–300 (2014)

    Article  Google Scholar 

  19. Alay-e-Abbas, S.M., Wong, K.M., Noor, N.A., Shaukat, A., Lei, Y.: An ab-initio study of the structural, electronic and magnetic properties of half-metallic ferromagnetism in Cr-doped BeSe and BeTe. Solid State Sci. 14, 1525–1535 (2012)

    Article  ADS  Google Scholar 

  20. Noor, N.A., Alay-e-Abbas, S.M., Saeed, Y., Ghulam Abbas, S.M., Shaukat, A.: Ab initio study of electronic structure and magnetic properties in ferromagnetic Be1−xMnxSe and Be1−xMnxTe alloys. J. Magn. Magn. Mater. 339, 11–19 (2013)

    Article  ADS  Google Scholar 

  21. Gorodynskyy, V., Zdansky, K., Pekarek, L., Malina, V., Vackova, S.: Ti and Mn co-doped semi-insulating InP particle detectors operating at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. A 555, 288–293 (2005)

    Article  ADS  Google Scholar 

  22. Grote, N., Baier, M., Soares, F.: Photonic integrated circuits on InP. In: Fibre Optic Communication, pp 799–840. Springer International Publishing (2017)

  23. Ma, K., Shahin, M., Abbasi, A., Roelkens, G., Morthier, G.: Demonstration of InP-on-Si self-pulsating DFB laser diodes for optical microwave generation. IEEE Photonics J. 9, 1–8 (2017)

    Google Scholar 

  24. Korona, K.P., Wysmolek, A., Kamińska, M., Twardowski, A., Piersa, M., Palczewska, M., Strzelecka, G., Hruban, A., Kuhl, J., Adomavicius, R., Krotkus, A.: Manganese as a fast charge carrier trapping center in InP. Physica B 382, 220–228 (2006)

    Article  ADS  Google Scholar 

  25. Cherfi, Y., Mokaddem, A., Bensaid, D., Doumi, B., Sayede, A., Dahmane, F., Tadjer, A.: A novel theoretical investigation of electronic structure and half-metallic ferromagnetism in 3d (V)-doped InP for spintronic applications. J. Supercond. Nov. Magn. 29, 1813–1819 (2016)

    Article  Google Scholar 

  26. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  28. Slater, J.C.: Adv. Quant. Chem 1, 5564 (1964)

    MathSciNet  Google Scholar 

  29. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz. Technische Universit?t, Wien, Austria, 2001, ISBN:3-9501031-1-2

  30. Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  31. Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  32. Kandpal, H.C., Fecher, G.H., Felser, C.: Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507 (2007)

    Article  ADS  Google Scholar 

  33. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  34. Nazir, S., Ikram, N., Tanveer, M., Shaukat, A., Saeed, Y., Reshak, A.H.: Spin-polarized structural, electronic, and magnetic properties of diluted magnetic semiconductors Cd1−xMnxS and Cd1−xMnxSe in zinc blende phase. Chem. A Eur. J. 113, 6022–6027 (2009)

    Google Scholar 

  35. Noskov, M.M.: Optical and magneto-optical properties of metals, (Sverdlovsk, UNTS), p. 217 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taghavi Mendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendi, R.T., Sarmazdeh, M.M., Bakhshayeshi, A. et al. Effect of Pressure on the Electronic, Magnetic, and Optical Properties of the In0.75Cr0.25P Compound. J Supercond Nov Magn 31, 4127–4139 (2018). https://doi.org/10.1007/s10948-018-4617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4617-8

Keywords

Navigation