Skip to main content
Log in

An Investigation of Y3Ba5Cu8O18 Doping with Ag Nanoparticles and Its Application as Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Y3Ba5Cu8O18 superconductors were prepared through a standard solid-state reaction and the structural properties of the samples were studied through XRD and the Rietveld refinement method. The effect of silver nanoparticles doping on the Y3Ba5Cu8O18 superconductors was studied as well. It is known that the size of nanoparticles is increased during aging. Therefore, two batches of samples with 1 and 2 wt% of Ag nanoparticles and the size range of 30, 200, 500, 700, 800, and 1000 nm were prepared. After preparing the samples and observing the Meissner effect, the crystallography, critical current density, critical temperature, magnetic susceptibility, SEM, and EDX experiments of the samples were carried out. The results of the critical current density measurements showed that the sample with 2 wt% Ag nanoparticles and the size of 700 nm has the maximum current density. In both batches of samples, increasing the nanoparticle size to 700 nm led to an increase in the critical current density. The crystallography studies showed that silver nanoparticles do not insert into the superconductor’s frame. Actually, they are placed in the samples as a distinct phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. De Gennes, P.-G.: Superconductivity of Metals and Alloys (advanced book classics). Perseus Books Group, New York (1999)

    Google Scholar 

  2. Mess, K.-H., Wolff, S., Schmüser, P.: Superconducting Accelerator Magnets. World Scientific, Singapore (1996)

    Book  Google Scholar 

  3. Bulaevskii, L., Buzdin, A., Kulić, M., Panjukov, S.: Coexistence of superconductivity and magnetism theoretical predictions and experimental results. Adv. Phys. 34(2), 175–261 (1985)

    Article  ADS  Google Scholar 

  4. Schafroth, M.: Theory of superconductivity. Phys. Rev. 96(5), 1442 (1954)

    Article  ADS  Google Scholar 

  5. Schooley, J., Hosler, W., Cohen, M.L.: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12(17), 474 (1964)

    Article  ADS  Google Scholar 

  6. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. Abrikosov, A.: Resonant tunneling in high-Tc superconductors (review). Phys. C: Supercond. 317, 154–174 (1999)

    Article  ADS  Google Scholar 

  8. Dew-Hughes, D.: The critical current of superconductors: an historical review. Low Temperature Phys. 27(9), 713–722 (2001)

    Article  ADS  Google Scholar 

  9. Lloberas, J., Sumper, A., Sanmarti, M., Granados, X.: A review of high temperature superconductors for offshore wind power synchronous generators. Renew. Sustain. Energy Rev. 38, 404–414 (2014)

    Article  Google Scholar 

  10. Sleight, A.W.: Room temperature superconductors. Acc. Chem. Res. 28(3), 103–108 (1995)

    Article  Google Scholar 

  11. Suan, M.S.M., Johan, M.R., Siang, T.C.: Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Phys. C: Supercond. 480, 75–78 (2012)

    Article  ADS  Google Scholar 

  12. Gomathi, A., Sundaresan, A., Rao, C.: Room-temperature ferromagnetism in nanoparticles of superconducting materials. Solid State Commun. 142(12), 685–688 (2007)

    Article  ADS  Google Scholar 

  13. Appelman, E.H., Morss, L.R., Kini, A.M., Geiser, U., Umezawa, A., Crabtree, G., Carlson, K.D.: Oxygen content of superconducting perovskites, La2-xSrxCuOy and YBa2Cu3Oy. Inorg Chem.;(United States) 26(20), 3237–3239 (1987)

    Article  Google Scholar 

  14. Manthiram, A., Swinnea, J., Sui, Z., Steinfink, H., Goodenough, J.: Influence of oxygen variation on the crystal structure and phase composition of the superconductor YBa2Cu3O7-x. J. Am. Chem Soc.;(United States) 109(22), 6667–6669 (1987)

    Article  Google Scholar 

  15. Cooper, J., Chu, C., Zhou, L., Dunn, B., Grüner, G.: Determination of the magnetic field penetration depth in superconducting yttrium barium copper oxide: deviations from the Bardeen-Cooper-Schrieffer laws. Phys. Rev. B 37(1), 638 (1988)

    Article  ADS  Google Scholar 

  16. Holland, G.F., Stacy, A.M.: Physical properties of the quaternary yttrium barium copper oxide superconductor (YBa2cu3o7). Acc. Chem. Res. 21(1), 8–15 (1988)

    Article  Google Scholar 

  17. Ayas, A.O., Ekicibil, A., Çetin, S.K., Coskun, A., Er, A.O., Ufuktepe, Y., Frat, T., Kymaç, K.: The structural, superconducting and transport properties of the compounds Y3Ba5Cu8O18 and Y3Ba5Ca2Cu8O18. J. Supercond. Nov. Magn. 24(7), 2179 (2011)

    Article  Google Scholar 

  18. Ekicibil, A., Cetin, S.K., Ayaş, A.O., Coşkun, A., Frat, T., Kymac, K.: Exploration of the superconducting properties of Y 3 Ba 5 Cu 8 O 18 with and without Ca doping by magnetic measurements. Solid State Sci. 13(11), 1954–1959 (2011)

    Article  ADS  Google Scholar 

  19. Bednorz, J.G., Müller, K.A.: Possible High T C Superconductivity in the Ba–La–Cu–O System. In: Ten Years of Superconductivity: 1980–1990, pp 267–271. Springer (1986)

  20. Gutierrez, J., Llordes, A., Gazquez, J., Gibert, M., Roma, N., Ricart, S., Pomar, A., Sandiumenge, F., Mestres, N., Puig, T.: Strong isotropic flux pinning in solution-derived YBa2cu3o7-x nanocomposite superconductor films. Nature Mater. 6(5), 367–373 (2007)

    Article  ADS  Google Scholar 

  21. Wu, M.-K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y., Chu, A.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908 (1987)

    Article  ADS  Google Scholar 

  22. Mirzadeh, M., Akhavan, M.: Electrical and magnetic properties of Gd (Ba2-xLax) Cu3O7+ δ. Eur. Phys. J. B 43(3), 305–318 (2005)

    Article  ADS  Google Scholar 

  23. Goyal, A., Paranthaman, M.P., Schoop, U.: The RABiTS approach: using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS bulletin 29(08), 552–561 (2004)

    Article  Google Scholar 

  24. Kim, C.-J., Hong, G.-W.: Defect formation, distribution and size reduction of in melt-processed YBCO superconductors. Supercond. Sci. Technol. 12(3), R27 (1999)

    Article  Google Scholar 

  25. Scholtz, J., Van Eenige, E., Wijngaarden, R., Griessen, R., de Leeuw, D.: Pressure dependence of Tc and Hc2 of CaLaBaCu3O7 up to 50 GPa. Phys. C: Supercond. 198(3-4), 231–236 (1992)

    Article  ADS  Google Scholar 

  26. Tavana, A., Akhavan, M.: How Tc can go above 100 K in the YBCO family. Eur. Phys. J. B 73(1), 79–83 (2010)

    Article  ADS  Google Scholar 

  27. Hong, M.-T.: Growth mechanism and infrared detection of high-temperature superconducting and colossal magnetoresistance films (2001)

  28. Tarascon, J.M., Greene, L.H., Barboux, P., McKinnon, W.R., Hull, GW, Orlando, T.P., Delin, K.A., Foner, S., Mcniff, E. Jr.: 3 d-metal doping of the high-temperature superconducting perovskites La-Sr-Cu-O and Y-Ba-Cu-O. Phys. Rev. B 36(16), 8393 (1987)

    Article  ADS  Google Scholar 

  29. Murakami, M., Morita, M., Doi, K., Miyamoto, K.: A new process with the promise of high Jc in oxide superconductors. Jpn. J. Appl. Phys. 28(7R), 1189 (1989)

    Article  ADS  Google Scholar 

  30. Kao, Y., Yao, Y., Jang, L., Xu, F., Krol, A., Song, L., Sher, C., Darovsky, A., Phillips, J., Simmins, J.: Effects of silver doping in the high-Tc superconductor system Y-Ba-Cu-O. J Appl. Phys. 67(1), 353–361 (1990)

    Article  ADS  Google Scholar 

  31. Aliabadi, A., Farshchi, Y.A., Akhavan, M.: A new Y-based HTSC with Tc above 100K. Phys. C: Supercond. 469(22), 2012–2014 (2009)

    Article  ADS  Google Scholar 

  32. Farbod, M., Batvandi, M.R.: Doping effect of Ag nanoparticles on critical current of YBa 2 Cu 3 O 7-δ bulk superconductor. Phys. C: Supercond. 471(3), 112–117 (2011)

    Article  ADS  Google Scholar 

  33. Turker, M.: Effect of production parameters on the structure and morphology of Ag nanopowders produced by inert gas condensation. Mater. Sci. Eng. A 367(1), 74–81 (2004)

    Article  Google Scholar 

  34. Tavana, A., Akhavan, M.: How Tc can go above 100 K in the YBCO family. Eur. Phys. J. B 73(1), 79–83 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shahid Chamran University of Ahvaz for providing support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh Heidarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoushtari, M.Z., Heidarzadeh, G. & Ghahfarokhi, S.E.M. An Investigation of Y3Ba5Cu8O18 Doping with Ag Nanoparticles and Its Application as Superconductor. J Supercond Nov Magn 31, 3475–3483 (2018). https://doi.org/10.1007/s10948-018-4581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4581-3

Keywords

Navigation