We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Optimization of FeSe Superconducting Tapes with Different Sheath Materials and Precursor Powders


FeSe superconducting tapes with different sheath materials of Nb/Cu composite, Ag, and Fe have been fabricated with a traditional in situ powder-in-tube (PIT) process, respectively. With the same cold working process and heat treatment, the influences of different sheath materials on the phase composition and microstructures of FeSe filaments have been analyzed. Due to the reaction between Nb-Se and Ag-Se, Nb2Se and Ag2Se particles can be clearly observed embedded in the filaments. Therefore, it is necessary to introduce a new method for the fabrication of Ag or Nb sheath FeSe wires in order to avoid the introduction of metal Fe in magnet system during practical applications. Based on our previous study, a high-energy ball milling process has been performed to achieve precursor powders with amorphous FeSe binary compound instead of elemental Se. The formation of Ag-Se compounds has been successfully avoided and the superconducting tapes with high superconducting FeSe critical temperature of 9.0 K have been obtained.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., WU, M.K.: Proc. Natl. Acad. Sci. USA 105, 14262 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    Bendele, M., Pomjakushina, E., Conder, K., Khasanov, R., Keller, H.: J. Supercond. Nov. Magn. 27, 965 (2014)

    Article  Google Scholar 

  3. 3.

    Margadonna, S., Takabayashi, Y., McDonald, M.T., Kasperkiewicz, K., Mizuguchi, Y., Takano, Y., Fitch, A.N., Suard, E., Prassides, K.: Chem. Commun. 21, 5607 (2008)

    Article  Google Scholar 

  4. 4.

    Medvedev, S., McQueen, T.M., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G.: Nat. Mater. 8, 630 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    He, S.L., He, J.F., Zhang, W.H., Zhao, L., Liu, D.F., Liu, X., Mou, D.X., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L.L., Peng, Y.Y., Liu, Y., Chen, C.Y., Yu, L., Liu, G.D., Dong, X.L., Zhang, J., Chen, C.T., Xu, Z.Y., Chen, X., Ma, X.C., Xue, Q.K., Zhou, X.J.: Nat. Mater. 12, 605 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    Li, W., Ding, H., Zhang, P., Deng, P., Chang, K., He, K., Ji, S., Wang, L., Ma, X., Wu, J., Hu, J.-P., Xue, Q.-K., Chen, X.: Phys. Rev. B 88, 140506 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    Zhang, W.H., Li, Z., Li, F.S., Zhang, H.M., Peng, J.P., Tang, C.J., Wang, Q.Y., He, K., Chen, X., Wang, L.L., Ma, X.C., Xue, Q.K.: Phys. Rev. B 89(R), 060506 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    Liu, D.F., Zhang, W., Mou, D., He, J., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L., Zhao, L., He, S., Peng, Y., Liu, X., Chen, C., Yu, L., Liu, G., Dong, X., Zhang, J., Chen, C., Xu, Z., Hu, J., Chen, X., Ma, X., Xue, Q.K., Zhou, X.J.: Nat. Commun. 3, 931 (2012)

    Article  Google Scholar 

  9. 9.

    Fang, M.H., Yang, J.H., Balakirev, F.F., Kohama, Y., Singleton, J., Qian, B., Mao, Z.Q., Wang, H.D., Yuan, H.Q.: Phys. Rev. B 81(R), 020509 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    Li, X., Zhang, Y.F., Yuan, F.F., Zhuang, J.C., Cao, Z.M., Xing, X.Z., Zhou, W., Shi, Z.X.: J. Alloy. Compd. 664, 218 (2016)

    Article  Google Scholar 

  11. 11.

    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kumakura, H., Takano, Y.: Phys. C 471, 1150 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Mizuguchi, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeya, H., Kumakura, H., Takano, Y.: Appl. Phys. Express 2, 083004 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kawasaki, Y., Tanaka, T., Yamaguchi, T., Tsuda, S., Kumakura, H., Takano, Y.: Supercond. Sci. Technol. 24, 105002 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    Li, X., Liu, J.X., Zhang, S.N., Cui, L.J., Shi, Z.X.: J. Supercond. Nov. Magn. 29, 1755 (2016)

    Article  Google Scholar 

  15. 15.

    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kumakura, H., Takano, Y.: IEEE Trans. Appl. Supercond. 21, 2858 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    Izawa, H., Mizuguchi, Y., Fujioka, M., Takano, Y., Miura, O.: IEEE Trans. Appl. Supercond. 24, 6900304 (2014)

    Article  Google Scholar 

  17. 17.

    Izawa, H., Mizuguchi, Y., Takano, Y., Miura, O.: Phys. C 504, 77 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    Mizuguchi, Y., Izawa, H., Ozaki, T., Takano, Y., Miura, O.: Supercond. Sci. Technol. 24, 125003 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    Okamoto, H.: J. Phase Equilib. 12, 383 (1991)

    Article  Google Scholar 

  20. 20.

    Svendsen, S.R.: Acta Chem. Scand. 26, 3757 (1972)

    Article  Google Scholar 

  21. 21.

    Rahman, G., Kim, I.G., Freeman, A.J.: J. Phys.: Condens. Matter 24, 095502 (2012)

    ADS  Google Scholar 

Download references


This research was financially supported by the National ITER Program of China under contract no. 2015GB115001.

Author information



Corresponding author

Correspondence to Jianqing Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, J., Feng, J. et al. Optimization of FeSe Superconducting Tapes with Different Sheath Materials and Precursor Powders. J Supercond Nov Magn 31, 2747–2751 (2018). https://doi.org/10.1007/s10948-018-4571-5

Download citation


  • Superconductors
  • FeSe
  • Powder-in-tube process
  • Microstructure