Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 9, pp 2747–2751 | Cite as

Optimization of FeSe Superconducting Tapes with Different Sheath Materials and Precursor Powders

  • Shengnan Zhang
  • Jixing Liu
  • Jianqing FengEmail author
  • Botao Shao
  • Chengshan Li
  • Pingxiang Zhang
Original Paper


FeSe superconducting tapes with different sheath materials of Nb/Cu composite, Ag, and Fe have been fabricated with a traditional in situ powder-in-tube (PIT) process, respectively. With the same cold working process and heat treatment, the influences of different sheath materials on the phase composition and microstructures of FeSe filaments have been analyzed. Due to the reaction between Nb-Se and Ag-Se, Nb2Se and Ag2Se particles can be clearly observed embedded in the filaments. Therefore, it is necessary to introduce a new method for the fabrication of Ag or Nb sheath FeSe wires in order to avoid the introduction of metal Fe in magnet system during practical applications. Based on our previous study, a high-energy ball milling process has been performed to achieve precursor powders with amorphous FeSe binary compound instead of elemental Se. The formation of Ag-Se compounds has been successfully avoided and the superconducting tapes with high superconducting FeSe critical temperature of 9.0 K have been obtained.


Superconductors FeSe Powder-in-tube process Microstructure 


Funding Information

This research was financially supported by the National ITER Program of China under contract no. 2015GB115001.


  1. 1.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C., WU, M.K.: Proc. Natl. Acad. Sci. USA 105, 14262 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Bendele, M., Pomjakushina, E., Conder, K., Khasanov, R., Keller, H.: J. Supercond. Nov. Magn. 27, 965 (2014)CrossRefGoogle Scholar
  3. 3.
    Margadonna, S., Takabayashi, Y., McDonald, M.T., Kasperkiewicz, K., Mizuguchi, Y., Takano, Y., Fitch, A.N., Suard, E., Prassides, K.: Chem. Commun. 21, 5607 (2008)CrossRefGoogle Scholar
  4. 4.
    Medvedev, S., McQueen, T.M., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G.: Nat. Mater. 8, 630 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    He, S.L., He, J.F., Zhang, W.H., Zhao, L., Liu, D.F., Liu, X., Mou, D.X., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L.L., Peng, Y.Y., Liu, Y., Chen, C.Y., Yu, L., Liu, G.D., Dong, X.L., Zhang, J., Chen, C.T., Xu, Z.Y., Chen, X., Ma, X.C., Xue, Q.K., Zhou, X.J.: Nat. Mater. 12, 605 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Li, W., Ding, H., Zhang, P., Deng, P., Chang, K., He, K., Ji, S., Wang, L., Ma, X., Wu, J., Hu, J.-P., Xue, Q.-K., Chen, X.: Phys. Rev. B 88, 140506 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, W.H., Li, Z., Li, F.S., Zhang, H.M., Peng, J.P., Tang, C.J., Wang, Q.Y., He, K., Chen, X., Wang, L.L., Ma, X.C., Xue, Q.K.: Phys. Rev. B 89(R), 060506 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Liu, D.F., Zhang, W., Mou, D., He, J., Ou, Y.B., Wang, Q.Y., Li, Z., Wang, L., Zhao, L., He, S., Peng, Y., Liu, X., Chen, C., Yu, L., Liu, G., Dong, X., Zhang, J., Chen, C., Xu, Z., Hu, J., Chen, X., Ma, X., Xue, Q.K., Zhou, X.J.: Nat. Commun. 3, 931 (2012)CrossRefGoogle Scholar
  9. 9.
    Fang, M.H., Yang, J.H., Balakirev, F.F., Kohama, Y., Singleton, J., Qian, B., Mao, Z.Q., Wang, H.D., Yuan, H.Q.: Phys. Rev. B 81(R), 020509 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Li, X., Zhang, Y.F., Yuan, F.F., Zhuang, J.C., Cao, Z.M., Xing, X.Z., Zhou, W., Shi, Z.X.: J. Alloy. Compd. 664, 218 (2016)CrossRefGoogle Scholar
  11. 11.
    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kumakura, H., Takano, Y.: Phys. C 471, 1150 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Mizuguchi, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeya, H., Kumakura, H., Takano, Y.: Appl. Phys. Express 2, 083004 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kawasaki, Y., Tanaka, T., Yamaguchi, T., Tsuda, S., Kumakura, H., Takano, Y.: Supercond. Sci. Technol. 24, 105002 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Li, X., Liu, J.X., Zhang, S.N., Cui, L.J., Shi, Z.X.: J. Supercond. Nov. Magn. 29, 1755 (2016)CrossRefGoogle Scholar
  15. 15.
    Ozaki, T., Deguchi, K., Mizuguchi, Y., Kumakura, H., Takano, Y.: IEEE Trans. Appl. Supercond. 21, 2858 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Izawa, H., Mizuguchi, Y., Fujioka, M., Takano, Y., Miura, O.: IEEE Trans. Appl. Supercond. 24, 6900304 (2014)CrossRefGoogle Scholar
  17. 17.
    Izawa, H., Mizuguchi, Y., Takano, Y., Miura, O.: Phys. C 504, 77 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Mizuguchi, Y., Izawa, H., Ozaki, T., Takano, Y., Miura, O.: Supercond. Sci. Technol. 24, 125003 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Okamoto, H.: J. Phase Equilib. 12, 383 (1991)CrossRefGoogle Scholar
  20. 20.
    Svendsen, S.R.: Acta Chem. Scand. 26, 3757 (1972)CrossRefGoogle Scholar
  21. 21.
    Rahman, G., Kim, I.G., Freeman, A.J.: J. Phys.: Condens. Matter 24, 095502 (2012)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shengnan Zhang
    • 1
  • Jixing Liu
    • 1
    • 2
  • Jianqing Feng
    • 1
    Email author
  • Botao Shao
    • 1
    • 3
  • Chengshan Li
    • 1
  • Pingxiang Zhang
    • 1
  1. 1.Superconducting Materials Research CenterNorthwest Institute for Non-Ferrous Metal ResearchXi’anChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations