Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3159–3162 | Cite as

Orientation Behavior and Mechanism of Ag-doped GdBa2Cu3O7-δ Superconducting thin Films Derived by Metal Organic Deposition

  • M. J. Sun
  • W. Q. LiuEmail author
  • K. He
  • Z. Y. Liu
  • S. G. Chen
  • C. B. CaiEmail author
Original Paper


Ag-doped GdBa2Cu3O7−δ (GdBCO)-coated conductors are fabricated via a metal-organic process. The X-ray diffraction and scanning electron microscopy results show that the growth conditions of the GdBa2Cu3O7−δ matrix are modified, resulting in less a-axis growth and much smoother surface morphology and finally giving rise to much improvement of superconducting performance in a wide range of processing parameters. The orientation behavior and mechanism of Ag-doped GdBCO films are investigated. To reasonably explain the orientation behavior of Ag-doped GdBCO films, a simple nucleation model for Ag-doped GdBCO is established, suggesting quasi-liquid phases are perfected by Ag. As a consequence, a-axis nucleation is suppressed and strong c-axis nucleation is achieved in a wider processing window.


Ag addition Superconducting thin film MOD GdBCO Orientation mechanism 


Funding Information

This work is partly sponsored by the National Key R&D Program (2016YFF0101701), the National Natural Science Foundation of China (51572165, 11174193 and U1530115), the Science and Technology Commission of Shanghai Municipality (16521108400, 16DZ0504300, and 14521102800), the Science and Technology Key Foundation of Anhui Province(1604a0702037).


  1. 1.
    Feldmann, D.M., Ugurlu, O., Maiorov, B., Stan, L., Holesinger, T.G., Civale, L., Foltyn, S.R., Jia, Q.X.: Influence of growth temperature on critical current and magnetic flux pinning structures in Y Ba2Cu3O7−x. Appl. Phys. Lett. 91, 162501 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Xue, R.Z., Li, T., Chen, Z.P., Xue, Y.C., Hao, J.H., Chen, Y.Q.: Effect of firing temperature on the structure and superconducting properties of YBa2Cu3O7−x films. J. Supercond. Nov. Magn. 24, 1797 (2011)CrossRefGoogle Scholar
  3. 3.
    Wu, C.B., Zhao, G.Y., Fang, P.: Effect of the firing process on the critical current density of YBa2Cu3O7−x films derived from the sol-gel method. Mater. Chem. Phys. 167, 160–164 (2015)CrossRefGoogle Scholar
  4. 4.
    Varanasi, C., Biggers, R., Maartense, I., Peterson, T.L., Solomon, J., Moser, E.K., Dempsey, D., Busbee, J., Liptak, D., Kozlowski, G., Nekkanti, R., Oberly, C.E.: YBaCuO–Ag thick films deposited by pulsed laser ablation. Phys. C 297, 262–268 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Salamati, H., Babaei-Brojeny, A.A., Safa, M.: Investigation of weak links and the role of silver addition on YBCO superconductors. Supercond. Sci. Technol. 14, 816–819 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Pan, A.V., Pysarenko, S.V., David, W., Sergey, R., Dou, S.X.: Multilayering and Ag-doping for properties and performance enhancement in YBa2Cu3O7 films. IEEE Trans. App. Supercond. 17, 3585 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Obradors, X., Puig, T., Ricart, S., Coll, M., Gazquez, J., Palau, A., Granados, X.: Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Supercond. Sci. Technol. 25, 123001 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Sun, M.J., Qiu, W.B., Liu, Z.Y., Bai, C.Y., Guo, Y.Q., Cai, C.B.: J. Phys. Conf. Series 507, 022002 (2014)CrossRefGoogle Scholar
  9. 9.
    Sun, M.J., Liu, Z.Y., Bai, C.Y., Guo, Y.Q., Lu, Y.M., Fan, F., Cai, C.B.: Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition. Phys. C 519, 47–52 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Iguchi, T., Araki, T., Yamada, Y., Hirabayashi, I., Ikuta, H.: Fabrication of Gd–Ba–Cu–O films by the metal–organic deposition method using trifluoroacetates. Supercond. Sci. Technol. 15, 1415–1420 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, Z., Kametani, F., Kim, S. I., Larbalestier, D.C., Jang, H.W., Choi, K.J., Eom, C.B.: Influence of growth temperature on the vortex pinning properties of pulsed laser deposited YBa2Cu3O7−x thin films. J. Appl. Phys. 103, 043913 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Solovyov, V.F., Wiesmann, H.J., Suenaga, M.: Nucleation of YBa2Cu3O7−x on buffered metallic substrates in thick precursor films made by the BaF2 process. Supercond. Sci. Technol. 18, 239–248 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Obradors, X., Martínez-Julián, F., Zalamova, K., Vlada, V.R., Pomar, A., Palau, A., Llordés, A., Chen, H., Coll, M., Ricart, S., Mestres, N., Granados, X., Puig, T., Rikel, M.: Nucleation and mesostrain influence on percolating critical currents of solution derived YBa2Cu3O7 superconducting thin films. Phys. C 482, 58–67 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Sun, M.J., Yang, W.T., Liu, Z.Y., Bai, C.Y., Guo, Y.Q., Lu, Y.M., Lu, Q., Cai, C.B.: Ag doping effects on Y0.5Gd0.5Ba2Cu3O7−δ multilayers derived by low-fluorine metalorganic solution deposition. Mater. Res. Express 2, 096001 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Araki, T., Hirabayashi, I.: Review of a chemical approach to YBa2Cu3O7−x-coated superconductors—metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16, R71–R94 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Gu, Z.H., Yang, W.T., Bai, C.Y., Guo, Y.Q., Lu, Y.M., Liu, Z.Y., Lu, Q., Shu, G.Q., Cai, C.B.: Nucleation mechanism of YBCO in coated conductor films by BaF2 process. Chin. Phys. B 24, 096805 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Kumar, N.D., Rajasekharan, T., Seshuba, V.: YBCO/Ag composites through a preform optimized infiltration and growth process yield high current densities. Supercond. Sci. Technol. 24, 085005 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of High Temperature Superconductors, Department of PhysicsShanghai UniversityShanghaiChina
  3. 3.School of Physics and Electronic EngineeringFuyang Normal UniversityFuyangChina
  4. 4.Shanghai Creative Superconductor Technologies Co., Ltd.ShanghaiChina

Personalised recommendations