Advertisement

The Effect of Using Different Y2O3 Layers on the Activation Energy and Irreversibility Line of MPMG YBCO Bulk at 1050 °C Growth Temperature

Original Paper
  • 59 Downloads

Abstract

In this study, three kinds of YBCO samples which are named Y1, Y2 and Y3 were fabricated by a melt–powder–melt–growth (MPMG) method. The Y1 sample was placed into a platinum (Pt) crucible without Y2O3, the Y2 sample was located on a Al2O3 crucible with a freely poured Y2O3 powder and the Y3 sample was located on a Al2O3 crucible with a 1-mm-thick buffer layer of Y2O3. YBCO samples were investigated by magnetoresistivity (ρT) measurements in dc magnetic fields (parallel to the c-axis) up to 5 T. The effect of the Y2O3 layer on the activation energy and irreversible flux of the samples was studied. The activation energies (U) were determined using the Arrhenius activation energy law from ρT. The power law relationship for U with Hα was investigated. α was calculated to find out which defects were dominant in the samples. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10 and 90% criteria of the normal-state resistivity value from ρT curves. Irreversibility lines (ILs) were estimated from the equation Hirr ∼ (1 − Tirr(H)/Tirr(0)) n . The fitting results to giant flux creep and vortex glass models were discussed.

Keywords

MPMG method Y2O3 layer Activation energy Pinning mechanism Irreversibility field Vortex glass Vortex liquid Giant flux creep 

Notes

Funding Information

This study was supported by the Turkish Scientific and Research Council (TUBITAK) research grant (TBAG-107T751) and Karadeniz Technical University research grant (BAP-2008.111.001.8)

References

  1. 1.
    Ullrich, M., Walter, H., Leenders, A., Freyhardt, H.C.: Batch production of high-quality-customized-shaped-monolithic HTSC. Phys. C 311, 86 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Murakami, M., Oyama, T., Fujimoto, H., Gotoh, S., Yamaguchi, K., Shiohara, Y., Koshizuaka, N., Tanaka, S.: Melt processing of bulk high-Tc superconductors and their application. IEEE Trans. Mag 27, 1479 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Murakami, M.: Processing of bulk YBaCuO. Supercond. Sci. Technol. 5, 185 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Chaud, X., Isfort, D., Beaugnon, E., Tournier, R.: Isothermal growth of large YBa2Cu3O7−x single domains up to 93 mm. Phys. C 2413, 341 (2000)Google Scholar
  5. 5.
    Zou, X.W., Wang, Z.H., Chen, J.L., Zhang, H.: Effective activation energy U(T, H) in Na-doped MTG-YBCO crystals. Phys. C 31, 356 (2001)Google Scholar
  6. 6.
    Parra Vargas, C.A., Pimentel, J.L. Jr., Pureur, P., Landinez Tellez, D.A., Roa-Rojas, J.: Magnetization fluctuation analysis and superconducting parameters of La0.5RE0.5BaCaCu3O7−δ (RE = Y, Sm, Gd, Dy, Ho, Yb) superconductor. Phys. B 407, 3128 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Skourski, Y., Fuchs, G., Kerschl, P., Kozlov, N., Eckert, D., Nenkov, K., Müller, K.H.: Magnetization and magneto-resistance measurements of bulk YBa2Cu3O7−x in pulsed magnetic fields up to 50 T. Phys. B 325, 325 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Aydıner, A., Çakır, B., Başoğlu, M., Yanmaz, E.: The effect of excess Y2O3 addition on the mechanical properties of melt-processed YBCO superconductor. J. Supercond. Nov. Magn. 23, 1493 (2010)CrossRefGoogle Scholar
  9. 9.
    Aydıner, A., Çakır, B., Seki, H., Başoğlu, M., Wongsatanawarid, A., Murakami, M., Yanmaz, E.: The effect of Y2O3 buffer layer on the magnetic properties of melt-processed YBCO superconductor. J. Supercond. Nov. Magn. 24, 1397 (2011)CrossRefGoogle Scholar
  10. 10.
    Çakır, B., Aydıner, A.: Preparation and properties of MPMG YBCO bulk with Y2O3 layer. J. Supercond. Nov. Magn. 24, 1577 (2011)CrossRefGoogle Scholar
  11. 11.
    Jun, B.H., Jung, S.A., Park, S.D., Park, B.J., Han, Y.H., Kim, C.J.: Effects of Y2O3 additions on the oxygen diffusion in top-seeded melt growth processed YBa2Cu3O7−y superconductors. Phys. C 471, 876 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Anderson, P.W.: Theory of flux creep in hard superconductors. Phys. Rev. Lett. 9, 309 (1962)ADSCrossRefGoogle Scholar
  13. 13.
    Balaev, D.A., Dubrovskiy, A.A., Popkov, S.I., Shaykhutdinov, K.A., Petrov, M.I.: Magnetic field dependence of intergrain pinning potential in bulk granular composites YBCO plus CuO demonstrating large magneto-resistive effect. J. Supercond. Nov. Magn. 243, 21 (2008)Google Scholar
  14. 14.
    Nikolo, M., Goldfarb, R.B.: Flux creep and activation-energies at the grain-boundaries of Y-Ba-Cu-O superconductors. Phys. Rev. B 39, 6615 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Yang, T., Wang, Z.H., Zhang, H., Fang, J., Nie, Y., Qiu, L., Ding, S.Y.: Effective activation energy and phase diagram in the Er- doping MTG-YBa2Cu3O7−δ crystal. Phys. C 384, 130 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Cloet, V., Thersleff, T., Stadel, O., Hoste, S., Holzapfel, B., Van Driessche, I.: Transmission electron microscopy analysis of a coated conductor produced by chemical deposition methods. Acta Mater. 58, 1489 (2010)CrossRefGoogle Scholar
  17. 17.
    Marino, A., Sanchez, H., Martinez, H.: BISCCO Thin films: superconducting phases, irreversibility line and critical current. J. Supercond. Nov. Magn. 28, 391 (2015)CrossRefGoogle Scholar
  18. 18.
    Pena, J.P., Martinez, D.B., Pureur, P.: Magnetic measurements and kinetic energy of the superconducting condensate in SmBa2Cu3O7−δ. Braz. J. Phys. 43, 22 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Yeshurun, Y., Malozemoff, A.P.: Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal—an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Anderson, P., Kim, Y.: Hard superconductivity: theory of motion of Abrikosov flux lines. Rev. of Modern Phys. 36, 39 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    Luo, H., Ding, S.Y., Wu, X.F., Wang, Z.H., Luo, H.M.: The numerical of influence of flux creep on AC losses in superconductors. J. of Supercond. 14, 631 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Kujur, A., Behera, D.: Magneto-transport studies in (1-X)YBa2Cu3O(7−δ) +X BaTiO3 superconductors. J. Magn Magn Mater 377, 34 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Fisher, M.P.A.: Vortex-glass superconductivity—a possible new phase in bulk high-Tc oxides. Phys. Rev. Lett. 62, 1415 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    Chandra, J., Manekar, M., Sharma, V.K., Mondal, P., Tiwari, P., Roy, S.B.: Vortex matter in highly strained Nb75Zr25: analogy with viscous flow of disordered solids. J. of Low Temp. Phys. 186, 21 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Kumakura, H., Kitaguchi, H., Matsumoto, A., Yamada, H.: Upper critical field, irreversibility field, and critical current density of powder-in-tube-processed MgB2/Fe tapes. Supercond. Sci. Technol. 18, 1042 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Valladares, L.D., Dominguez, A.B., Quispe, R.B., Santibanez, W.F., Aguiar, J.A., Barnes, C.H.W., Majima, Y.: The irreversibilityline and Curie-Weiss temperature of the superconductor LaCaBaCu3−X(BO3)(X) with x = 0.2 and 0.3. Phys. Procedia 36, 354 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Mostafa, M.F., Hassen, A., Kunkel, H.P.: Irreversibility line of an Ag-doped Hg-based superconductor. Supercond. Sci. Technol. 23, 085010 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Vocational School of Health ServicesArtvin Çoruh UniversityArtvinTurkey

Personalised recommendations