Skip to main content
Log in

A Comparative Study of Physical Properties of Er and Yb Nanophase Ferrite for Industrial Application

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nano ferrites CuCr0.3Er0.03Fe1.67O4 and CuCr0.3Yb0.03Fe1.67O4 were synthesized using standard ceramic technique. X-ray diffraction (XRD) patterns confirmed that the samples had cubic spinel structures. The average crystallite sizes of Er and Yb samples were in the range of 104.2–100 nm. The morphology analyses using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) confirmed that the samples were in the nanoscale range. The compositional analyses using energy-dispersive x-ray (EDX) showed the atomic percentage (at.%) and weight percentage (wt%) of the investigated samples. The magnetic properties were carried out at room (300 K) and at low (100 K) temperatures magnetic hysteresis loop. The data showed that Er sample had higher saturation magnetization (Ms) and lower coercivity (Hc) than that of Yb sample suggesting that Er sample can be applied in magnetic applications. Moreover, Er sample had higher dielectric constant (ε’), dielectric loss (ε”) and dielectric loss tangent (tan δ) than that of Yb sample. However, Yb sample had higher resistivity than that of Er sample suggesting that Yb sample can be applied in electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zaki, H.M., Al-Heniti, S.: J. Nanosci. Nanotechnol. 12, 7126 (2012)

    Article  Google Scholar 

  2. Yu, M., Draskovic, T.I., Wu, Y.: Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16, 5026–5033 (2014). https://doi.org/10.1039/c3cp55457k

    Article  Google Scholar 

  3. Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Synthesis, characterization and magnetic properties of nanocrystalline. Int. J. Mod. Phys. B 28(25), 1450165 (2014). https://doi.org/10.1142/S0217979214501653

    Article  ADS  Google Scholar 

  4. Hong, B.C., Kawano, K.: Luminescence studies of the rare earth ions-doped CaF2 and MgF2 films for wavelength conversion. J. Alloys Compd. 408–412, 838–841 (2006). https://doi.org/10.1016/j.jallcom.2005.01.133

    Article  Google Scholar 

  5. Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Structural and magnetic properties of nanograined Ni 0. 7 − y Zn 0.3 Ca y Fe2O4 spinels Structural and magnetic properties of nanograined. Eur. Phys. J. Appl. Phys. 66, 30402 (2014). https://doi.org/10.1051/epjap/2014130573

    Article  Google Scholar 

  6. El-Bassuony, A.A.H.: Tuning the Structural and Magnetic Properties on Cu/Cr Nanoferrite Using Different Rare-Earth Ions. Journal of Materials Science, Materials in Electronics (2017)

    Google Scholar 

  7. El-Bassuony, A.A.H., Abdelsalam, H.K.: Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726(2017), 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  Google Scholar 

  8. Krishna, K.R., Ravinder, D., Kumar, K.V., Lincon, C.A.: Synthesis, XRD & SEM studies of zinc substitution in nickel ferrites by citrate gel technique. World J. Condens. Matter Phys. 2, 153–159 (2012)

    Article  ADS  Google Scholar 

  9. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  10. Bamzai, K.K., Kour, G., Kaur, B., Kulkarni, S.D.: J. Magn. Magn. Mater. 327, 159 (2013)

    Article  ADS  Google Scholar 

  11. Desai, P.A., Athawale, A.A.: Microwave combustion synthesis of silver doped lanthanum ferrite magnetic nanoparticles. Def. Sci. J. 63, 285–291 (2013). https://doi.org/10.14429/dsj.63.2387

    Article  Google Scholar 

  12. Zhang, D.-H., Li, H.-B., Li, G.-D., Chen, J.-S.: Magnetically recyclable Ag-ferrite catalysts: general synthesis and support effects in the epoxidation of styrene. Dalton Trans. (2009)

  13. Ateia, E., El, A.A.H.: Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J. Mater. Sci. Mater. Electron. 28, 11482–11490 (2017). https://doi.org/10.1007/s10854-017-6944-0

    Article  Google Scholar 

  14. Tholkappiyan, R., Vishista, K.: Phys. B Condens. Matter 448, 177 (2014)

    Article  ADS  Google Scholar 

  15. Deraz, N.M., Alarifi, A.: Microstructure and magnetic studies of zinc ferrite nano-particles. Int. J. Electrochem. Sci. 7, 6501–6511 (2012)

    Google Scholar 

  16. Ahmad, I., Abbas, T., Ziya, A.B., Maqsood, A.: Structural and magnetic properties of erbium doped nanocrystalline Li – Ni ferrites. Ceram. Int. 40, 7941–7945 (2014). https://doi.org/10.1016/j.ceramint.2013.12.142

    Article  Google Scholar 

  17. Ateia, E., Salah, L.M., El-Bassuony, A.A.H.: Investigation of cation distribution and microstructure of nano ferrites prepared by different wet methods. J. Inorg. Organomet. Polym. Mater. 25, 1362–1372 (2015). https://doi.org/10.1007/s10904-015-0248-8

    Article  Google Scholar 

  18. Rajesh, D., Sunandana, C.S.: XRD, optical and AFM studies on pristine and partially iodized Ag thin film. Results Phys. 2, 22 (2012)

    Article  ADS  Google Scholar 

  19. Zhou, X., Jiang, J., Li, L., Xu, F.: Preparation and magnetic properties of La-substituted Zn-Cu-Cr ferrites via a rheological phase reaction method. J. Magn. Magn. Mater. 314, 7–10 (2007). https://doi.org/10.1016/j.jmmm.2007.02.030

    Article  ADS  Google Scholar 

  20. El-Bassuony, A.A.H., Abdelsalam, H.K.: Giant exchange bias of hysteresis loops on Cr3 + -doped Ag Nanoparticles. J. Supercond. Nov. Magn. (2017)

  21. Ateia, E.E., El-Bassuony, A.A., Abdelatif, G., Soliman, F.S.: Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci. Mater. Electron. 28, 11482–11490 (2017). https://doi.org/10.1007/s10854-016-5517-y

    Article  Google Scholar 

  22. Gabal, M.A., Al Angari, Y.M.: Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010). https://doi.org/10.1016/j.jmmm.2010.05.054

    Article  ADS  Google Scholar 

  23. El-Bassuony, A.A.: Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. Mater. Electron. 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  Google Scholar 

  24. Ravinder, D., Reddy, K.S., Mahesh, P., Rao, T.B., Venudhar, Y.C.: Electrical conductivity of chromium substituted copper ferrites. J. Alloys Compd. 370, 17–22 (2004). https://doi.org/10.1016/j.jallcom.2003.09.126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H. A Comparative Study of Physical Properties of Er and Yb Nanophase Ferrite for Industrial Application. J Supercond Nov Magn 31, 2829–2840 (2018). https://doi.org/10.1007/s10948-017-4543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4543-1

Keywords

Navigation