Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 9, pp 2767–2776 | Cite as

Prediction of Half-Metallic Properties in Non-transition Metal-based Binary Compounds X Bi (X = Ba, Sr and Ca) with Zinc-Blende and Wurtzite Structures

  • S. Benatmane
  • H. Bendaoud
  • L. Beldi
  • B. Bouhafs
  • S. Méçabih
  • B. AbbarEmail author
Original Paper


In this study, structural, electronic and magnetic properties of non-transition metal-based binary compounds X Bi (X = Ba, Sr and Ca) in five different phases: rock salt, NiAs, wurtzite, zinc blende and CsCl, are investigated in order to find new sp magnetic materials used for real spintronic and other related applications. The calculations are performed by a developed full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the spin density functional theory. As exchange-correlation potential, we used the generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) and the modified Becke-Johnson potential mBJ-GGA-PBE form. It is found that the magnetic moment in these compounds is mainly contributed by the spin-polarized p orbitals of Bi atoms. The WZ XBi are true half-metallic ferromagnet with opposite spin direction at Fermi energy having a magnetic moment of 2.00 μ B per formula unit.


DFT Modified Becke-Johnson potential Electronic properties Binary ferromagnet Half-metallicity 


  1. 1.
    žutić, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Katsnelson, M.I., Irkhin, V.Y., Chioncel, L., Lichtenstein, A.I., de Groot, R.A.: Rev. Mod. Phys. 80, 315 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Yoshida, H.K., Dinh, V.: Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Chen, X.Q., Podloucky, R., Rogl, P.: J. Appl. Phys. 100, 113901 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Coey, J.: Solid State Sci. 7, 660 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Attema, J., De Wijs, G., De Groot, R.: J. Phys.: Condens. Matter 19, 165203 (2007)ADSGoogle Scholar
  7. 7.
    Volnianska, O., Boguslawski, P.: J. Phys.: Condens. Matter 22, 073202 (2010)ADSGoogle Scholar
  8. 8.
    Ivanovskii, A.L.: Phys. Usp. 50, 1031 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Pickard, C.J., Needs, R.: Phy. Rev. Lett. 107, 087201 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Dong, S., Zhao, H.: Appl. Phys. Lett. 100, 142404 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Fischer, G., Sanchez, N., Adeagbo, W., Lüders, M., Szotek, Z., Temmerman, W.M., Ernst, A., Hergert, W., Muñoz, M.C.: Phy. Rev. B 84, 205306 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Gohda, Y., Tsuneyuki, S.: Phy. Rev. Lett. 106, 047201 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Kusakabe, K., Geshi, M., Tsukamoto, H., Suzuki, N.: J. Phys.: Condens. Matter 16, S5639 (2004)ADSGoogle Scholar
  14. 14.
    Sieberer, M., Redinger, J., Khmelevskyi, S., Mohn, P.: Phys. Rev. B 73, 024404 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Yao, K.L., Jiang, J.L., Liu, Z.L., Gao, G.Y.: Phys. Lett. A 359, 326 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Volnianska, O., Jakubas, P., Bogusawski, P.: J. Alloys Compd. 423, 191 (2006)CrossRefGoogle Scholar
  17. 17.
    Dong, S., Zhao, H.: Appl. Phys. Lett. 98, 182501 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Dong, S., Zhao, H.: J. Magn. Magn. Mater. 324, 2588 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, X., Lu, B., Iimori, T., Nakatsuji, K., Komori, F.: Surf. Sci. 602, 1844 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Volnianska, O., Bogusawski, P.: Phys. Rev. B 75, 224418 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  22. 22.
    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  23. 23.
    Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    Singh, D.J., Nordstrom, L.: Planewaves, pseudopotentials, and the LAPW method. Springer, Berlin (2005)Google Scholar
  25. 25.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Austria (2012)Google Scholar
  26. 26.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. 30, 244 (1944)ADSCrossRefGoogle Scholar
  30. 30.
    Gao, G.Y., Yao, K.L., Şaşioglu, E., Sandretskii, L.M., Liu, Z.L., Jiang, J.L.: Phys. Rev. B 75, 174442 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Sandeep, D.P.R., Shankar, A., Ghimire, M.P., Khenata, R., Thapa, R.K.: Chem. Met. Alloys 7, 160 (2014)Google Scholar
  32. 32.
    Gao, G.Y., Yao, K.L., Song, M.H., Liu, Z.L.: J. Magn. Magn. Mater. 323, 2652 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Blöchl, P.E., Jepsen, O., Anderson, O.K.: Phys. Rev. B 49, 16223 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, C.-W., Yan, S.-S.: Solid State Commun. 149, 387 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Miao, M.S., Lambrecht, W.R.L.: Phys. Rev. B 71, 064407 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Sanyal, B., Bergqvist, L., Eriksson, O.: Phys. Rev. B 68, 054417 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Xie, W.-H., Liu, B.-G., Pettifor, D.G.: Phys. Rev. B 68, 134407 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria

Personalised recommendations