Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3133–3139 | Cite as

Magnetic Transition in Nonmetal N- and F-Doping g-ZnO Monolayer with Different Concentrations

  • Jun-Qing Wen
  • Guo-Xiang Chen
  • Jian-Min Zhang
  • Dong-Ming Li
  • Xiao-Zhen Zhang
Original Paper
  • 95 Downloads

Abstract

In this paper, the geometrical, electronic, and magnetic properties of nonmetal (N, F) atom doping g-ZnO monolayer supercell forming 6.25, 12.5, and 25% concentrations have been investigated comprehensively using the first-principles method. The structural optimization implies that N or F atom doping g-ZnO monolayer causes the structural distortion around the doping atoms. Doping g-ZnO monolayer with one N atom is FM semiconductor, and the total magnetic moment is 0.651 μB. The N–N-pair or two N–N-pair doping g-ZnO is AFM states. The total magnetic moments mainly originate from the spin polarization of the doping atom N, and the rest comes from the nearest Zn and O atoms. Doping g-ZnO with F atoms with the concentrations of 6.25, 12.5, and 25% all are nonmagnetic semiconductor. The F-doping can adjust energy band gap, which increases with the increase of F concentration.

Keywords

N- and F-doping ZnO Density functional theory Band structures Magnetic properties 

Notes

Funding Information

The authors acknowledge computational supports from the National Natural Science Foundation of China (Grant Nos. 11247229 and 11547118).

References

  1. 1.
    Zhao, Y.F., Yang, H.Y., Yang, B., Liu, Z.X., Yang, P.: Sol. Energy 140, 21 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Tabassum, S., Yamasue, E., Okumura, H., Ishihara, K.N.: Appl. Surf. Sci. 377, 355 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Su, Y.L., Zhang, Q.Y., Zhou, N., Ma, C.Y., Liu, X.Z., Zhao, J.J.: Solid State Commun. 250, 123 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Tan, C.L., Sun, D., Xu, D.S., Tian, X.H., Huang, Y.W.: Ceram. Int. 42, 10997 (2016)CrossRefGoogle Scholar
  5. 5.
    Tusche, C., Meyerheim, H.L., Kirschner, J.: Phys. Rev. Lett. 99, 026102 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, X., Yao, K., Sun, K., Li, W.X., Lee, J., Matranga, C.: J. Phys. Chem. C 117, 11211 (2013)CrossRefGoogle Scholar
  7. 7.
    Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfolda, M.N.R., Harding, J.H.: J. Mater. Chem. 15, 139 (2005)CrossRefGoogle Scholar
  8. 8.
    Hur, T.B., Hwang, Y.H., Kima, H.K., Park, H.L.: J. Appl. Phys. 96, 1740 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Wu, H.M., Wu, X.J., Pei, Y., Zeng, X.C.: Nano Res. 4, 233 (2011)CrossRefGoogle Scholar
  10. 10.
    Botello-Méndez, A.R., López-Urías, F., Terrones, M., Terrones, H.: Nano lett. 8, 1562 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Botello-Méndez, A.R., López-Urías, F., Terrones, M., Terrones, H.: Nano Res. 1, 420 (2008)CrossRefGoogle Scholar
  12. 12.
    Sarkar, D., Ghosh, C.K., Chattopadhyay, K.K.: Appl. Surf. Sci. 418, 252 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Guo, H.Y., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X.J., Yang, J.L.: J. Phys. Chem. C 116, 11336 (2012)CrossRefGoogle Scholar
  14. 14.
    Ren, J., Zhang, H., Cheng, X.L.: Int. J. Quantum Chem. 113, 2243 (2013)CrossRefGoogle Scholar
  15. 15.
    He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., Feng, Y.P.: J. Phys.: Condens. Matter 22, 175501 (2010)ADSGoogle Scholar
  16. 16.
    Schmidt, T.M., Miwa, R.H., Fazzio, A.: Phys. Rev. B 81, 195413 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Wu, M.Y., Sun, D., Tan, C.L., Tian, X.H., Huang, Y.W.: Materials 10, 359 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Tan, C.L., Sun, D., Xu, D.S., Tian, X.H., Huang, Y.W.: Ceram. Int. 42, 10997 (2006)CrossRefGoogle Scholar
  19. 19.
    Tan, C.L., Sun, D., Zhou, L., Tian, X.H., Huang, Y.W.: Superlattices Microstruct 98, 416 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Cheng, H.X., Wang, X.X., Hu, Y.W., Song, H.Q., Huo, J.R., Li, L., Qian, P.: J. Solid State Chem. 244, 175 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    He, A.L., Wang, X.Q., Wu, R.Q., Lu, Y.H., Feng, Y.P.: J. Phys.: Condens. Matter 22, 175501 (2010)ADSGoogle Scholar
  22. 22.
    Schmidt, T.M., Miwa, R.H., Fazzio, A.: Phys. Rev. B 81, 195413 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  24. 24.
    Kresse, G., Joubert, D.: Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Adolph, B., Furthmüller, J., Bechstedt, F.: Phys. Rev. B 63, 125108 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  28. 28.
    Hammer, B., Hansen, L.B., Nørskov, J.K.: Phys. Rev. B 59, 7413 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, Y.H., Zhang, M.L., Zhou, Y.C., Zhao, J.H., Fang, S.M., Li, F.: J. Mater. Chem. A 2, 13129 (2014)CrossRefGoogle Scholar
  30. 30.
    Tu, Z.C.: J. Comput. Theor. Nanosci. 7, 1182 (2010)CrossRefGoogle Scholar
  31. 31.
    Topsakal, M., Cahangirov, S., Bekaroglu, E., Ciraci, S.: Phys. Rev. B: Condens. Matter Mater. Phys. 80, 235119 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Guo, H.Y., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X.J., Yang, J.L.: J. Phys. Chem. C 116, 11336 (2012)CrossRefGoogle Scholar
  33. 33.
    Deng, S.H., Duan, M.Y., Xu, M., He, L.: Physica B 406, 2314 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Zhang, Y.G., Zhang, G.B., Wang, Y.X.: J. Appl. Phys. 109, 063510–1 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jun-Qing Wen
    • 1
  • Guo-Xiang Chen
    • 1
  • Jian-Min Zhang
    • 2
  • Dong-Ming Li
    • 1
  • Xiao-Zhen Zhang
    • 1
  1. 1.School of ScienceXi’an Shiyou UniversityXi’anChina
  2. 2.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations