Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2305–2312 | Cite as

Synthesis of CdS Nanoparticles by Hydrothermal Method and Their Effects on the Electrical Properties of Bi-based Superconductors

  • N. Loudhaief
  • H. Labiadh
  • E. Hannachi
  • M. Zouaoui
  • M. Ben SalemEmail author
Original Paper


Cadmium sulfide (CdS) nanoparticles were synthesized by hydrothermal process and have been characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive x-ray spectroscopy (EDXS) system. The effect of added CdS nanoparticles on the superconducting properties and flux pinning capability in (Bi,Pb)2Sr2Ca2Cu3Oy system (denoted as (Bi,Pb)-2223) has been reported. Hydrothermal method is an effective route to synthesize CdS nanoparticles with good crystallinity and having average grain size of about 12 nm. Then, small amounts (0–0.4 wt%) of nanosized CdS particles were added to Bi-2233 samples using a solid-state reaction route. The transport critical current densities and the electrical resistivity ρ(T, H) were performed using the four-probe technique. The results show that samples sintered by small amount of CdS nanoparticles (≤ 0.3 wt%) exhibit the higher critical current densities and energy pinning in applied magnetic fields compared to free added sample. Consequently, the addition of CdS could introduce effective pinning centers which account for the improvement in superconducting properties in the Bi-2223 materials.


Bi-2223 superconductors Hydrothermal method CdS nanoparticles Superconducting properties Flux pinning 


  1. 1.
    Chen, R., Han, B., Yang, L., Yang, Y., Xu, Y., Mai, Y.: Controllable synthesis and characterization of CdS quantum dots by a microemulsion-mediated hydrothermal method. J. Lumin. 172, 197–200 (2016)CrossRefGoogle Scholar
  2. 2.
    Qutub, N., Sabir, S.: Optical, thermal and structural properties of CdS quantum dots synthesized by a simple chemical route. Int. J. Nanosci. Nanotechnol. 8, 111–120 (2012)Google Scholar
  3. 3.
    Zhang, H.: Effects of post-annealing treatment on the structure and photoluminescence properties of CdS/PS nanocomposites prepared by sol-gel method. Optoelectron. Lett. 12, 81–84 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Ren, B., Cao, M., Zhang, Q., Huang, J., Zhao, Z., Jin, X., Li, C., Shen, Y., Wang, L.: Controllable synthesis of CdS nanowire by a facile solvothermal method and its temperature dependent photoluminescent property. J. Alloys Compd. 659, 74–81 (2016)CrossRefGoogle Scholar
  5. 5.
    Elavarthi, P., Kumar, A.A., Murali, G., Reddy, D.A., Gunasekhar, K.R.: Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitation method. J. Alloys Compd. 656, 510–517 (2016)CrossRefGoogle Scholar
  6. 6.
    Darwish, M., Mohammadi, A., Assi, N.: Microwave-assisted polyol synthesis and characterization of pvp-capped CdS nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74, 387–396 (2016)CrossRefGoogle Scholar
  7. 7.
    Yang, H., Huang, C., Li, X., Shi, R., Zhang, K.: Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Mater. Chem. Phys. 90, 155–158 (2005)CrossRefGoogle Scholar
  8. 8.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Ozturk, O., Yegen, D., Yilmazlar, M., Varilci, A., Terzioglu, C.: The effect of cooling rates on properties of Bi1.7Pb0.35Sr1.9Ca2.1Cu3Oy superconductors produced by solid-state reaction method. Physica C 451, 113–117 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Michel, C., Hervieu, M., Borel, M.M., Grandin, A., Deslandes, F., Provost, J., Raveau, B.: Superconductivity in the Bi-Sr-Cu-O system. Z. Phys. B: Condens. Matter 68, 421–423 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Yildirim, G., Varilci, A., Akdogan, M., Terzioglu, C.: Role of annealing time and temperature on structural and superconducting properties of (Bi, Pb)-2223 thin films produced by sputtering. J. Mater. Sci: Mater. Electron. 23, 928–935 (2012)Google Scholar
  12. 12.
    Sarkar, K.A., Maartense, I., Peterson, T.L., Kumar, B.: Preparation and characterization of superconducting phases in the Bi(Pb)SrCaCuO system. J. Appl. Phys. 66, 3717–3722 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, H., Sato, H.: Universal relationship between Tc and the hole content in p-type cuprate superconductors. Phys. Rev. Lett. 70, 1697–1699 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Ghahfarokhi, S.E.M., Shoushtari, M.Z.: Structural and physical properties of Cd-doped Bi1.64Pb0.36Sr2Ca2−xCdxCu3Oy superconductor. Physica B 405, 4643–4649 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Halim, S.A., Khawaldeh, S.A., Mohamed, S.B., Azhan, H.: Superconducting properties of Bi2−xPbxSr2Ca2Cu3Oy system derived via sol-gel and solid state routes. Mater. Chem. Phys. 61, 251–259 (1999)CrossRefGoogle Scholar
  16. 16.
    Dos Santos, C.A.M., Moehlecke, S., Kopelevich, Y., Machado, A.J.S.: Inhomogeneous superconductivity in Bi2Sr2Ca1−xPrxCu2O8+δ. Physica C 390, 21–26 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Biju, A., Abhilash Kumar, R.G., Aloysius, R.P., Syamaprasad, U.: Structural and superconducting properties of Bi1.7Pb0.4Sr2−xGdxCa1.1Cu2.1Oy system. Physica C 449, 109–115 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Awana, V.P.S., Agarwal, S.K., Narlikar, A.V., Das, M.P.: Superconductivity in Pr- and Ce-doped Bi2CaSr2Cu2Oy systems. Phys. Rev. B 48, 1211–1216 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Berger, H., Ariosa, D., Gaal, R., Saleh, A., Margaritondo, G., Lee, S.F., Huang, S.H., Chang, H.W., Chuang, T.M., Liou, Y., Yao, Y.D., Hwu, Y., Je, J.H., Gasparov, L.V., Tanner, D.B.: Coexistence of ferromagnetism and high-temperature superconductivity in Dy-Doped BiPbSrCaCuO. Surf. Rev. Lett. 9, 1109–1112 (2002)CrossRefGoogle Scholar
  20. 20.
    Ghattas, A., Annabi, M., Zouaoui, M., Ben Azzouz, F., Ben Salem, M.: Flux pinning by Al-based nano particles embedded in polycrystalline (Bi,Pb)-2223 superconductors. Physica C 468, 31–38 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Zouaoui, M., Ghattas, A., Annabi, M., Ben Azzouz, F., Ben Salem, M.: Effect of nano-size ZrO2 addition on the flux pinning properties of (Bi, Pb)-2223 superconductor. Supercond. Sci. Technol. 21, 125005 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Ben Salem, M.K., Hannachi, E., Slimani, Y., Hamrita, A., Zouaoui, M., Bessais, L., Ben Salem, M., Ben Azzouz, F.: SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014)CrossRefGoogle Scholar
  23. 23.
    Guo, Y.C., Tanaka, Y., Kuroda, T., Dou, S.X., Yang, Z.Q.: Addition of nanometer SiC in the silver-sheathed Bi2223 superconducting tapes. Physica C 311, 65–74 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Ben Salem, M.K., Almessiere, M.A., Al-Otaibi, A.L., Ben Salem, M., Ben Azzouz, F.: Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7−d. J. Alloys Compd. 657, 286–295 (2016)CrossRefGoogle Scholar
  25. 25.
    Kim, J.J., Lee, H., Chung, J., Shin, H.J., Lee, H.J., Ku, J.K.: Flux-creep dissipation in epitaxial YBa2Cu3O7−δ film: Magnetic-field and electrical-current dependence. Phys. Rev. B 43, 2962–2967 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Koch, R.H., Foglietti, V., Gallagher, W.J., Koren, G., Gupta, A., Fisher, M.P.A.: Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Phys. Rev. Lett. 63, 1511–1514 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Wen, H.H., Zhao, Z.X., Xiao, Y.G., Yin, B., Li, J.W.: Evidence for flux pinning induced by spatial fluctuation of transition temperatures in single domain (Y1−xPrx)Ba2Cu3O7−δ samples. Physica C 251, 371–378 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Wen, H.H., Zhao, Z.X., Wang, R.L., Li, H.C., Yin, B.: Evidence for the lattice-mismatch-stress-field induced flux pinning in (Gd1−xYx)Ba2Cu3O7−δ thin films. Physica C 262, 81–88 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Ghorbani, S.R., Wang, X.L., Hossain, M.S.A., Dou, S.X., Lee, S.I.: Coexistence of the δ l and δ T˙c flux pinning mechanisms in nano-Si-doped MgB2. Supercond. Sci. Technol. 23, 025019 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • N. Loudhaief
    • 1
  • H. Labiadh
    • 1
  • E. Hannachi
    • 1
  • M. Zouaoui
    • 1
  • M. Ben Salem
    • 1
    Email author
  1. 1.Laboratory of Physics of Materials – Structure and Properties, Department of Physics, Faculty of Sciences of BizerteUniversity of CarthageZarzounaTunisia

Personalised recommendations