Advertisement

Abnormal Transport and Magnetic Properties Induced by Change of the Phase Volume Ratio for YBa2Cu3O7-δ /La0.67Sr0.33MnO3 Hybrids

  • Changzhao ChenEmail author
  • Wuqiong Zhang
  • Shiwang Zhu
  • Chuanbing Cai
Original Paper
  • 101 Downloads

Abstract

Two elaborately designed hybrids consisting of superconducting YBa2Cu3O7-δ (YBCO) and ferromagnetic La0.67Sr0.33MnO3 (LSMO), namely 20 × (YBCO(m)/LSMO(100 − m)) are prepared on single crystal SrTiO3 (STO) by pulsed laser deposition (PLD) with 20 being repetition periods and m = 90 and 10, respectively, which represents YBCO pulse number in a period. The films show highly c-oriented and epitaxial quality, suggested by XRD 𝜃–2𝜃 scans and pole figures. The 20 × (YBCO90/LSMO10) sample with a large YBCO volume fraction exhibits the typical character of a metal superconductor at about 90 K, while its transition width reaches 9.1 K, which is nearly eight times of that of the pure YBCO film. Above the superconducting transition temperature, a superparamagnetic signal rather than ferromagnetic behavior is observed, which may be associated with a diluted system consisting of the ferromagnetic nanoparticles embedded in the superconducting films. For the hybrid with a small YBCO volume fraction, i.e., the 20 × (YBCO10/LSMO90) sample, its transport behavior at normal state is insulating, and it is found that the Mott variable range hopping conduction dominates in this insulating phase in the temperature range 70–310 K. Obviously distinguishable insulator to superconductor (IS) transition occurs at 52 K, but the superconducting diamagnetic signals are very weak in the magnetic measurements below the IS temperature. For this sample, the magnetization loop at 100 K is ferromagnetic, yet manifested by a reduced coercive field and residual magnetization as compared with a pure LSMO film. In fact, both hybrids represent two kinds of nanocomposites, i.e., superconducting nanoparticles in a ferromagnetic matrix and ferromagnetic nanoparticles in a superconducting matrix, which benefits to study interfacial interactions due to an increased interface to value ratio and reduced size effect.

Keywords

YBCO/LSMO Abnormal transport properties Superparamagnetic 

Notes

Acknowledgments

The authors would like thank Prof. Zhe Li at the Magnetic Materials and Devices of Qujing Normal University for his helpful discussion.

Funding

This work is partly sponsored by the National Natural Science Foundation of China (No. 11404005), the Undergraduate Training Programs for Innovation and Entrepreneurship of Anhui University of Science and Technology (No. 201610361282), and the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors.

References

  1. 1.
    Buzdin, A.I.: Rev. Mod. Phys. 77, 935 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Aladyshkin, A.Y., Silhanek, A.V., Gillijns, W., Moshckalkov, V.V.: Supercond. Sci. Technol. 22, 053001 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Peña, V., Sefrioui, Z., Arias, D., Leon, C., Santamaria, J., Martinez, J.L., te Velthuis, S.G.E., Hoffmann, A.: Phys. Rev. Lett. 94, 057002 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Lin, J.G., Cheng, S.L., Chang, C.R., Xing, D.Y.: J. Appl. Lett. 98, 023920 (2005)ADSGoogle Scholar
  5. 5.
    Chakhalian, J., Freeland, J.M., Srager, G., Strempfer, J., Khaliulin, G., Cezar, J.C., Charlton, T., Dalgliesh, R., Bernhard, C., Cristiani, G., Habermeier, H.-U., Keimer, B.: Nat. Phys. 2, 244 (2006)CrossRefGoogle Scholar
  6. 6.
    Hoppler, J., Stahn, J., Niedermayer, C., Malik, V.K., Bouyanfif, H., Drew, A.J., Rössle, M., Buzdin, A., Cristiani, G., Habermeier, H.-U., Keimer, B., Bernhard, C.: Nat. Mater. 8, 315 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Visani, C., Sefrioui, Z., Tornos, J., Leon, C., Briatica, J., Bibes, M., Barthelemy, A., Santamaria, J., Villegas, J. E.: Nat. Phys. 8, 539 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Li, Y., Cai, C.: Solid State Commun. 152, 1203 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Uribe-Laverde, M.A., Satapathy, D.K., Marozau, I., Malik, V.K., Das, S., Sen, K., Stahn, J., Rühm, A., Kim, J.-H., Keller, T., Devishvili, A., Toperverg, B.P., Bernhard, C.: Phys. Rev. B 87, 115105 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Chien, T.Y., Kourkoutis, L.F., Chakhalian, J., Gray, B., Kareev, M., Guisinger, N.P., Muller, D.A., Freeland, J.W.: Nat. Commun. 4, 2336 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Mani, A., Kumary, T.G., Lin, J.G.: Sci. Rep. 5, 12780 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Dybko, K., Werner-Malento, K., Aleshkevych, P., Wojcik, M., Sawicki, M., Przyslupski, P.: Phys. Rev. B 80, 144504 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Penã, V., Visani, C., Barriocanal, J.G., Arias, D., Sefrioui, Z., Leon, C., Santamaria, J., Almasan, C.A.: Phys. Rev. B 73, 104513 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Habermeier, H.-U.: J. Phys. Conf. Ser. 108, 012039 (2008)CrossRefGoogle Scholar
  15. 15.
    Norton, D.P., Lowndes, D.H.: Phys. Rev. B 48, 6460 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Suresh, V., Lin, J.-C., Liu, H.-J., Zhang, Z., Chiang, P.-C., Hsun, Y.-C., Chen, Y.-C., Lin, J.-Y., Chu, Y.-H.: Nanoscale 8, 18454 (2016)CrossRefGoogle Scholar
  17. 17.
    Bartolomé, E., Cayado, P., Solano, E., Mocuta, C., Ricart, S., Mundet, B., Coll, M., Gázquez, J., Meledin, A., van Tendeloo, G., Valvidares, S.M., Herreio-Martín, J., Gargiani, P., Pellegrin, E., Magén, C., Puig, T., Obradors, X.: Adv. Electron. Mater. 3, 1700037 (2017)Google Scholar
  18. 18.
    Wang, J., Tsai, C.-F., Bi, Z., Naugle, D.G., Wang, H.: IEEE Trans. Appl. Supercond. 19, 3503 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Tsai, C.-F., Chen, L., Chen, A., Khatkhatay, F., Zhang, W., Wang, H.: IEEE Trans. Appl. Supercond. 23, 8001204 (2013)CrossRefGoogle Scholar
  20. 20.
    Wimbush, S.C., Durrell, J.H., Tsai, C.F., Wang, H., Jia, Q.X., Blamire, M.G.: Supercond. Sci. Technol. 23, 045019 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, C., Chen, H., Cai, C.: J. Supercond. Nov. Magn. 29, 3127 (2016)CrossRefGoogle Scholar
  22. 22.
    Soltan, S., Albrecht, J., Habermeier, H.-U.: Phys. Rev. B 70, 144517 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, C., Li, Y., Wang, B.: Solid State Commun. 161, 1 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Przyslupski, P., Tsarou, A., Dluzewski, P., Paszkowicz, W., Minikayev, R., Dybko, K., Sawicki, M., Dabrowski, B., Kimaball, C.: Supercond. Sci. Technol. 19, S38 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Ovsyannikov, G.A., Denisuk, S.A., Bdikin, I.K., Ivanov, Z., Claeson, T.: Physica C 616, 408 (2004)Google Scholar
  26. 26.
    Ovsyannikov, G.A., Constantinian, K.Y., Kislinski, Y. V., Shadrin, A.V., Zaitsev, A.V., Petrzhik, A.M., Demidov, V.V., Borisenko, I.V., Kalabukhov, A.V., Winkler, D.: Supercond. Sci. Technol. 24, 055012 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Feng, Y., Jin, K., Gu, L., He, X., Ge, C., Zhang, Q., He, M., Guo, Q., Wan, Q., He, M., Lu, H., Yang, G.: Sci. Rep. 6, 22382 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Woodfield, B.F., Wilson, M.L., Byers, J.M.: Phys. Rev. Lett. 78, 3201 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Xu, J., Howson, M.A., Hickey, B.J., Greig, D., Kolb, E., Veillet, P., Wiser, N.: Phys. Rev. B 55, 416 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Eerenstein, W., Hibma, T., Celotto, S.: Phys. Rev. B 70, 184404 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Changzhao Chen
    • 1
    Email author
  • Wuqiong Zhang
    • 1
  • Shiwang Zhu
    • 1
  • Chuanbing Cai
    • 2
  1. 1.College of Mechanics and Optoelectronic PhysicsAnhui University of Science and TechnologyHuainanChina
  2. 2.Shanghai Key Laboratory of High Temperature SuperconductorsShanghai UniversityShanghaiChina

Personalised recommendations