Preparation of Nb3Al Superconducting Tapes by a Powder-in-Tube Method Combined with Hot-Pressed Sintering

  • Wenjie Zhang
  • Wenjia Lin
  • Pingyuan Li
  • Liang Zheng
  • Xinsheng Yang
  • Zhou Yu
  • Xifeng Pan
  • Guo Yan
  • Yong ZhaoEmail author
  • Yong ZhangEmail author
Original Paper


The precursors of Nb-Al tape were fabricated by a powder-in-tube (PIT) technique. Supersaturated solid solutions of Nb-Al powder were obtained by high-energy ball milling, followed by a powder-in-tube process to prepare series of Nb3Al precursor tapes. Compared with sintering under normal pressure, the hot-pressing sintering greatly increased the critical current density of the tapes. The results showed that the Nb3Al tapes prepared via the powder-in-tube method and hot-pressed sintering could significantly improve the J c performance, and the value of J c (8 K, 0 T) was higher than 6 × 105 A/cm2. The Nb3Al tapes after pressing under the pressure of 20 MPa and sintering at 950 C for 3 h had the best magnetic flux pinning performance, and the sample reached the maximum flux pinning force (F p,max) of 3.28109 N/m3 in the magnetic field of 2.2 T.


Nb3Al superconducting tape Mechanical alloying Powder-in-tube Hot-pressed sintering 


Funding Information

The authors are grateful for the financial support of the Sichuan Province Science Program (Grant No. 2017JY0057), the National Natural Science Foundation of China (Grant Nos. 51271155, 51302224, and 51377138), and the Program of International S&T Cooperation (Grant No. 2013DFA51050).


  1. 1.
    Takeuchi, T.: Nb3al conductors for high field applications. Supercond. Sci. Technol. 13, R101–119 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Takeuchi, T., Kikuchi, A., Banno, N., Kitaguchi, H., Iijima, Y., Tagawa, K., Nakagawa, K., Tsuchiya, K., Mitsuda, C, Koizumi, N.: Status and perspective of the nb3al development. Cryogenics 48, 371–380 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Kobayashi, T., Tsuchiya, K., Shintomi, T., Terashima, A., Banno, N., Nimori, S., Takeuchi, T., Tagawa, K., Iwaki, G.: Development of Nb3Al superconducting wire for accelerator magnets. IEEE Trans. Appl. Supercond. 14, 1016–1019 (2004)CrossRefGoogle Scholar
  4. 4.
    Takeuchi, T., Togano, K., Tachikawa, K.: Nb3al and its ternary A15 compound conductors prepared by a continuous liquid quenching technique. IEEE Trans. Magn. 23, 956–959 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Iijima, Y., Kikuchi, A., Banno, N., Takeuchi, T., Inoue, K.: Direct formation of A15 phase through RHQ treatment in RIT-processed Nb/Al-Cu precursor wire. IEEE Trans. Appl. Supercond. 13, 3410–3413 (2003)CrossRefGoogle Scholar
  6. 6.
    Yamada, R., Kikuchi, A., Ambrosio, G., Andreev, N., Barzi, E., Cooper, S., Feher, V., Kashikin, V., Lamm, M., Novitski, I., Takeuchi, T., Tartaglia, M., Turrioni, D., Verweij, A.P., Wake, M., Willering, G., Zlobin, A.V.: Feasibility study of Nb3Al rutherford cable for high field accelerator magnet application. IEEE Trans. Appl. Supercond. 17, 1461–1464 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Tagawa, K., Takeuchi, T., Banno, N., Iijima, Y., Kikuchi, A., Kitaguchi, H., Iwaki, G., Sakurai, Y.: Trial manufacture of a km class length of Cu cladding RHQT Nb3Al flat-wire. IEEE Trans. Appl. Supercond. 16, 1168–1167 (2006)CrossRefGoogle Scholar
  8. 8.
    Takeuchi, T., Banno, N., Fukuzaki, T., Wada, H.: Large improvement in high-field critical current densities of Nb3Al conductors by transformation-heat-based up-quenching method. Supercond. Sci. Technol. 13, L11–14 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Yoo, D.J., Hwang, S.M., Lee, S.M.: Phase formation in mechanically alloyed Nb-Al powders. J. Mater. Sci. Lett. 19, 1327–1329 (2000)CrossRefGoogle Scholar
  10. 10.
    Kim, H.S., Kum, D., Hanada S.: Structural evolution during mechanical alloying and annealing of a Nb-25at%Al alloy. J. Mater. Sci. 35, 235–239 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Li, P.Y., Chen, Y.L., Xu, L.Y., Zhang, Y., Pan, X.F., Yan, G., Cheng, C.H., Feng, Y., Zhao, Y.: Phase formation and superconducting properties of mechanically alloyed Nb3(Al1xGex) system. Supercond. Sci. Technol. 29, 75001–75009 (2016)CrossRefGoogle Scholar
  12. 12.
    Pan, X.F., Yan, G., Qi, M., Cui, L.J., Chen, Y.L., Zhao, Y.: Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing. Phys. C 502, 14–19 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Harada, N., Taira, H., Osaki, K., Tada, N.: Microstructures and flux pinning properties in Nb/sub 3/Al tapes by ohmic-heating method. IEEE Trans. Appl. Supercond. 9, 1429–1432 (1999)CrossRefGoogle Scholar
  14. 14.
    Kumakura, H., Kitaguchi, H., Matsumoto, A., Yamada, H., Hirakawa, M., Tachikawa, K.: Fabrication of A15-type superconducting tape conductors by applying the ex situ powder-in-tube method. Supercond. Sci. Technol. 18, 147–151 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Field, M., Hentges, R., Parrell, J., Zhang, Y., Hong, S.: Progress with NbSn conductors at Oxford instruments, superconducting technology. IEEE Trans. Appl. Supercond. 11, 3692–3695 (2001)CrossRefGoogle Scholar
  16. 16.
    Banno, N., Uglietti, D., Seeber, B., Takeuchi, T., Flükiger, R.: Field and strain dependence of critical current in technical Nb3Al superconductors. Supercond. Sci. Technol. 18, S338–343 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Atkinson, H.V., Davies, S.: Fundamental aspects of hot isostatic pressing: an overview. Metall. Mater. Trans. A 31, 2981–3000 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R&D CenterSouthwest Jiaotong UniversityChengduChina
  2. 2.Western Superconducting Technologies (WST) Co., Ltd.Xi’anChina

Personalised recommendations