An Investigation on Magnetic-Interacting Fe3O4 Nanoparticles Prepared by Electrochemical Synthesis Method

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Naked, polyvinylchloride (PVC)-coated, and polyethylene glycol (PEG)-coated Fe3O4 nanoparticles (NPs) with an equivalent average particle size of 10 nm were prepared through an electrochemical synthesis method. The structural and magnetic properties were investigated systematically. The X-ray diffraction study coupled with the Rietveld refinement of XRD data showed that samples are crystallized in cubic spinel structure with space group referred to as Fd3m. The nature of DC magnetization versus field M (H) plot for sample resembles qualitatively with ferromagnetic (FM) systems. The AC-susceptibility data obtained at different frequencies confirmed the presence of a frequency-dependent freezing temperature. Based on the interparticle interaction strength and phenomenological models (Néel–Brown, Vogel–Fulcher, and critical slowing down), the magnetic dynamic behavior of nanoparticles was characterized. By fitting the experimental data with mentioned models, the possibility existence of superparamagnetic and a spin-glass state at low temperatures was proposed for the samples. Also, the obtained values from fitting performance showed a coating effect on interparticle interaction for PVC- and PEG-coated Fe3O4 nanoparticles.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Mendonça, E. C., Jesus, C.B.R., Folly, W.S.D., Meneses, C.T., Duque, J.G.S.: Size effects on the magnetic properties of ZnFe2O4 nanoparticles. J. Supercond. Nov. Magn 26, 2329–2331 (2013)

    Article  Google Scholar 

  2. 2.

    Nagahama, T., Matsuda, Y., Tate, K., Kawai, T., Takahashi, N., Hiratani, S., Watanabe, Y., Yanase, T., Shimada, T.: Magnetic properties of epitaxial Fe3O4 films with various crystal orientations and tunnel magnetoresistance effect at room temperature. Appl. Phys. Lett. 105, 102410 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    Guimarães, A.P.: Principles of Nanomagnetism, 1st Edn. Springer-Verlag, Berlin (2009)

    Google Scholar 

  4. 4.

    Vargas, J.M., Nunes, W.C., Socolovsky, L.M., Knobel, M., Zanchet, D.: Effect of dipolar interaction observed in iron-based nanoparticle. Phys. Rev. B 72(18), 184428–184434 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    Nadeem, K., Krenn, H., Traussnig, T., Wurschum, R., Szabó, D., Letofsky-Papst, I.: Effect of dipolar and exchange interactions on magnetic blocking of maghemite nanoparticles. J. Magn. Magn. Mater. 323, 1998–2004 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Hansen, M.F., Mørup, S.: Models for the dynamics of interacting magnetic nanoparticles. J. Magn. Magn. Mater. 184, 262–274 (1998)

    ADS  Article  Google Scholar 

  7. 7.

    Aghazadeh, M., Hosseinifard, M.: Electrochemical preparation of ZrO2 nanopowder: impact of the pulse current on the crystal structure, composition and morphology. Ceram. Int. 39, 4427–4435 (2013)

    Article  Google Scholar 

  8. 8.

    Aghazadeh, M., Yousefi, T., Ghaemi, M.: Low-temperature electrochemical synthesis and characterization of ultrafine Y(OH)3 and Y2O3 nanoparticles. J. Rare Earths 30, 236–240 (2012)

    Article  Google Scholar 

  9. 9.

    Aghazadeh, M., Maragheh, M.G., Ganjali, M.R., Norouzi, P.: Preparation and characterization of Mn5O8 nanoparticles: a novel and facile pulse cathodic electrodeposition followed by heat-treatment. Inorganic and Nano-Metal Chemistry 27, 1085–1089 (2017)

    Article  Google Scholar 

  10. 10.

    Aghazadeh, M., Barmi, A.A.M., Hosseinifard, M.: Nanoparticulates Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition. Mater. Lett. 73, 28–31 (2012)

    Article  Google Scholar 

  11. 11.

    Aghazadeh, M., Malek Barmi, A.A., Gharailou, D., Peyrovi, M.H., Sabour, B., Najafi, F.: Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl. Surf. Sci. 283, 871–875 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    Aghazadeh, M., Nozad Golikand, A., Ghaemi, M.: Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int. J. Hydrogen Energy 36, 8674–8679 (2011)

    Article  Google Scholar 

  13. 13.

    Barani, A., Aghazadeh, M., Ganjali, M.R., Sabour, B., Barmi, A.A.M., Dalvand, S.: Nanostructured nickel oxide ultrafine nanoparticles: synthesis, characterization, and supercapacitive behavior. Mater. Sci. Semicond. Process. 23, 85–92 (2014)

    Article  Google Scholar 

  14. 14.

    Karimzadeh, I., Aghazadeh, M., Ganjali, M.R., Norouzi, P., Doroudi, T.: Saccharide-coated superparamagnetic Fe3O4 nanoparticles (SPIONs) for biomedical applications: an efficient and scalable route for preparation and in situ surface coating through cathodic electrochemical deposition (CED). Mater. Lett. 189, 290–294 (2017)

    Article  Google Scholar 

  15. 15.

    Karimzadeh, I., Aghazadeh, M., Ganjali, M.R., Norouzi, P., Shirvani-Arani, S.: A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett. 179, 5–8 (2016)

    Article  Google Scholar 

  16. 16.

    Karimzadeh, I., Aghazadeh, M., Ganjali, M.R., Dourudi, T.: Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED) method for biomedical applications. Curr. Nanosci. 13, 167–174 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    Karimzadeh, I., Aghazadeh, M., Dourudi, T., Ganjali, M.R., Gharailou, D.: Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J. Clust. Sci. 28, 1259–1271 (2017)

    Article  Google Scholar 

  18. 18.

    Aslibeiki, B., Kameli, P., Ehsani, M.H., Salamati, H., Muscas, G., Agostinelli, E., Foglietti, V., Casciardi, S., Peddis, D.: Solvothermal synthesis of MnFe2O4 nanoparticles: the role of polymer coating on morphology and magnetic properties. J. Magn. Magn. Mater. 399, 236–244 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    Kumar, L., Kar, M.: Influence of al3+ ion concentration on the crystal structure and magnetic anisotropy of nano crystallines pinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Justin Joseyphus, R., Jeyadevan, B., Tohji, K., Chattopadhyay, K.: Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. J. Magn. Magn. Mater. 238(2), 281–287 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Shinoda, K., Jeyadevan, B., Tohji, K., Nakatsuka, K., Furubayashi, T., Nakatani, I.: Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63(18), 184108–184114 (2001)

    ADS  Article  Google Scholar 

  22. 22.

    Lavorato, G.C., Lima, E., Tobia, D., Fiorani, D., Troiani, H.E., Zysler, R.D., Winkler, E.L.: Size effects in bimagnetic CoO/Co Fe2O4 core/shell nanoparticles. Nanotechnology 25, 355704–355712 (2014)

    Article  Google Scholar 

  23. 23.

    Desautels, R.D., Skoropata, E., Chen, Y.Y., Ouyang, H., Freeland, J.W., Lierop, J.V.: Increased surface spin stability in γ-Fe2O3 nanoparticles with a Cu shell. J. Phys. Condens. Matter 24, 146001–146011 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    Aslibeiki, B., Kameli, P., Manouchehri, I., Salamati, H.: Strongly interacting super spins in Fe3O4 nanoparticles. Curr. Appl. Phys. 12, 812–816 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    Mukadam, M.D., Yusuf, S.M., Sharma, P., Kulshreshtha, S.K., Dey, G.K.: Dynamics of spin clusters in amorphous Fe2O3. Phys. Rev. B 72, 174408–174415 (2005)

    ADS  Article  Google Scholar 

  26. 26.

    Millan, A., Urtizberea, A., Silva, N., Palacio, F., Amaral, V., Snoeck, E., Serin, V.: Surface effects in maghemite nanoparticles. J. Magn. Magn. Mater. 312, 5–9 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    Chen, J., Sorensen, C., Klabunde, K., Hadjipanayis, G., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by co-precipitation. Phys. Rev. 54, 9288–9296 (1996)

    ADS  Article  Google Scholar 

  28. 28.

    Dodson, H.M., McClelland-Brown, E.: Magnetic blocing temperatures of single-domain grains during slow cooling. J Geophys. Res. 85, 2625–2637 (1980)

    ADS  Article  Google Scholar 

  29. 29.

    Goya, G.F., Morales, M.P.: Field dependence of blocking temperature in magnetite nanoparticles. J Metastable Nanocrystalline Mater. 20, 673–678 (2004)

    Article  Google Scholar 

  30. 30.

    Hansen, M.F., Mørup, S.: Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203, 214–216 (1999)

    ADS  Article  Google Scholar 

  31. 31.

    Parker, D., Ladieu, F., Vincent, E., Mériguet, G., Dubois, E., Dupuis, V., Perzynski, R.: Experimental investigation of superspin glass dynamics. Appl. Phys. 97, 10A502–10A505 (2005)

    Article  Google Scholar 

  32. 32.

    Suzuki, Y., Hwang, H.Y., Cheong, S.W., Siegrist, T., Van Dover, R.B., Asamitsu, A., Tokura, Y.: Magnetic anisotropy of doped manganite thin films and crystals. J. Appl. Phys. 83, 7064–7065 (1998)

    ADS  Article  Google Scholar 

  33. 33.

    Rostamnejadi, A., Salamati, H., Kameli, P.: Magnetic properties of interacting La0.67Sr0.33MnO3 nanoparticles. J. Supercond. Nov. Magn. 25, 1123–1132 (2012)

    Article  Google Scholar 

  34. 34.

    Mydosh, J.A.: Spin Glasses: an Experimental Introduction. Taylor and Francis, London (1993)

    Google Scholar 

  35. 35.

    Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D: Appl. Phys. 42, 013001–013029 (2009)

    ADS  Article  Google Scholar 

  36. 36.

    Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)

    ADS  Article  Google Scholar 

  37. 37.

    Goya, G.F., Berquo, T.S., Fonseca, F.C., Morales, M.P.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    ADS  Article  Google Scholar 

  38. 38.

    Masunaga, S.H., Jardim, R.F., Fichtner, P.F.P.: Role of dipolar interactions in a system of Ni nanoparticles studied by magneticsusceptibility measurements. J. Rivas Phys. Rev. B 80, 184428–184435 (2009)

    ADS  Article  Google Scholar 

  39. 39.

    Rault, J.: Origin of the Vogel–Fulcher–Tammann law in glass-forming materials: the −− bifurcation. J. Non-Crystalline Solids 271, 177–217 (2000)

    ADS  Article  Google Scholar 

  40. 40.

    Kura, H., Takahashi, M., Ogawa, T.: Extreme enhancement of blocking temperature by strong magnetic dipoles interaction of α-Fe nanoparticle-based high-density agglomerate. J. Phys. D: Appl. Phys. 44, 022002–022006 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    Alonso, J., Fdez-Gubieda, M.L., Barandiaran, J.M., Svalov, A., Barquin, L.F., Venero, D.A., Orue, I.: Crossover from superspin glass to superferromagnet in FexAg100-x nanostructured thin films (20x50). Phys. Rev. B 82, 054406–054414 (2010)

    ADS  Article  Google Scholar 

  42. 42.

    Dormann, J.L., Bessais, L., Fiorani, D.: A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J. Phys. C 21, 2015–2034 (1988)

    ADS  Article  Google Scholar 

  43. 43.

    Dormann, J.L., Fiorani, D., Tronc, E.: On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J. Magn. Magn. Mater. 202, 251–267 (1999)

    ADS  Article  Google Scholar 

  44. 44.

    Dormann, J.L., Fiorani, D., Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  45. 45.

    Mydosh, J.A.: Spin Glasses: an Experimental Introduction. Taylor and Francis, London (1993)

    Google Scholar 

  46. 46.

    Ogielski, A.T., Morgenstern, I.: Critical behavior of three-dimensional Ising spin-glass model. Phys. Rev. Lett. 54, 928–931 (1985)

    ADS  Article  Google Scholar 

  47. 47.

    Fischer, K.H., Hertz, J.: Spin Glasses. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  48. 48.

    Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Ehsani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaei, N., Ehsani, M.H., Aghazadeh, M. et al. An Investigation on Magnetic-Interacting Fe3O4 Nanoparticles Prepared by Electrochemical Synthesis Method. J Supercond Nov Magn 31, 2139–2147 (2018). https://doi.org/10.1007/s10948-017-4445-2

Download citation

Keywords

  • Ferromagnetic
  • Magnetic interacting
  • Nanoparticles
  • AC susceptibility