Irreversibility in Rolled Tantalum

Original Paper
  • 10 Downloads

Abstract

We investigated the magnetic and thermodynamic properties of rolled tantalum in superconducting state. The magnetization shows a crossover from type I to type II superconductivity as the magnetic field increases beyond the thermodynamic critical field. In both regimes, the sample shows a substantial irreversibility of the magnetization which we attribute to the pinning of the entities that characterize the intermediate and mixed states. Magnetic relaxation data taken in the intermediate state shows an important contribution of the quantum tunnelling below 3.7 K.

Keywords

Tantalum Heat capacity Magnetic properties Superconductivity Macroscopic tunneling 

References

  1. 1.
    Auer, J., Ullmaier, H.: Phys. Rev. B 7, 136 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    Eilenberger, G.: Phys. Rev. 153, 584 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Luk’yanchuk, I.: Phys. Rev. B 63, 174504 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Bogomolnyi, E.B.: Sov. J. Nucl. Phys. 24, 449 (1976)MathSciNetGoogle Scholar
  5. 5.
    Jacobs, L., Rebbi, C.: Phys. Rev. B 19, 4486 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Kleinert, H.: Europhys. Lett. 74, 889 (2006)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hove, J., Mo, S., Sudbø, A.: Phys. Rev. B 66, 064524 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Kimura, N., Kabeya, N., Saitoh, K., Satoh, K., Ogi, H., Ohsaki, K., Aoki, H.: J. Phys. Soc. Jpn. 85, 024715 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Sauerzopf, F.M., Moser, E., Weber, H.W., Schmidt, F.A.: J. Low Temp. Phys. 66, 191 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    Sporna, J.F., Seidl, E., Weber, H.W.: J. Low Temp. Phys. 37, 639 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Weber, H.W., Seidl, E., Botlo, M., Laa, C., Mayerhofer, E., sauerzopf, F.M., Schalk, R.M., Wiesinger, H.P., Rammer, J.: Phys. C 161, 272 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    Goodman, B.B.: IBM J. Res. Develop. 6, 63 (1962)CrossRefGoogle Scholar
  13. 13.
    Budnick, J.I.: Phys. Rev. 119, 1578 (1960)ADSCrossRefGoogle Scholar
  14. 14.
    Essmann, U., Wiethaup, W., Habermeir, H.U.: Phys. Stat. Sol. (A) 43, 151 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    Chudnovsky, E.M., Vélez, S., García-santiago, A., Hernandez, J.M., Tejada, J.: Phys. Rev. B 83, 064507 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Vélez, S., Zarzuela, R., García-santiago, A., Tejada, J.: Phys. Rev. B 85, 064506 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Menghini, M., Wijngaarden, R.J.: Phys. Rev. B 75, 014529 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Prozorov, R.: Phys. Rev. Lett. 98, 257001 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Prozorov, R., Fidler, A.F., Holberg, J.R., Canfield, P.C.: Nat. Phys. 4, 327 (2008)CrossRefGoogle Scholar
  20. 20.
    Shaw, R.W., Mapother, D.E., Hopkins, D.C.: Phys. Rev. 120, 88 (1960)ADSCrossRefGoogle Scholar
  21. 21.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Powers, R.W., Doyle, M.V.: Acta. Met. 4, 233 (1955)CrossRefGoogle Scholar
  23. 23.
    Cottrell, A.H.: Dislocations and Plastic Flow in Crystals. Clarendon, Oxford (1965)MATHGoogle Scholar
  24. 24.
    Halbritter, J.: Z. Physik 243, 201 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    Sharvin, Y.V., Gantmakher, F.: Soviet Phys. JETP 12, 866 (1961)Google Scholar
  26. 26.
    Sonier, J.E., Brewer, J.H., Kiefl, R.F., Bonn, D.A., Dunsiger, S.R., Hardy, W.N., Liang, R.-X., MacFarlane, W.A., Miller, R.I., Riseman, T.M.: Phys. Rev. Lett. 79, 2875 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Tran, V.H., Hillier, A.D., Adroja, D.T., Kaczorowski, D.: J. Phys.: Condens. Matter 22, 505701 (2010)Google Scholar
  28. 28.
    Kadono, R.: J. Phys.: Condens. Matter 16, S4421 (2004)ADSGoogle Scholar
  29. 29.
    Laulajainen, M., Callaghan, F.D., Kaiser, C.V., Sonier, J.E.: Phys. Rev. B 74, 054511 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Ning, Y.X., Song, C.L., Wang, Y.L., Chen, X., Jia, J.F., Xue, Q.K., Ma, C.J.: Phys.: Condens. Matter 22, 065701 (2010)ADSGoogle Scholar
  31. 31.
    Shan, L., Huang, Y., Ren, C., Wen, H.H.: Phys. Rev. B 73, 134508 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    DeBeer-Schmitt, L., Dewhurst, C.D., Hoogenboom, B.W., Petrovic, C., Eskildsen, M.R.: Phys. Rev. Lett. 97, 127001 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Kogan, V.G., Zhelezina, N.V.: Phys. Rev. B 71, 134505 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Varmazis, C., Strongin, M.: Phys. Rev. B 10, 1885 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    Zhao, H.J., Misko, V.R., Tempere, J., Nori, F.: Phys. Rev. B 95, 104519 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Prozorov, R., Giannetta, R.W., Polyanskii, A.A., Perkins, G.K.: Phys. Rev. B 72, 212508 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Miu, L., Tanabe, Y., Adachi, T., Koike, Y., Miu, D., Jakob, G., Adrian, H.: Phys. Rev. B 78, 024520 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Miu, D., Noji, T., Adachi, T., Koike, Y., Miu, L.: Supercond. Sci. Technol. 25, 115009 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Dorsey, A.T., Goldstein, R.E.: Phys. Rev B 57, 3058 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsMăgureleRomania
  2. 2.Department of PhysicsUnited States Naval AcademyAnnapolisUSA

Personalised recommendations