Study of Semimagnetic Mn-Doped WO3 Nanoparticles Synthesised by Precipitation Method: Hydrogenation Creates a Promising DMS

Original Paper
  • 15 Downloads

Abstract

Abstract Tungsten oxide (WO3) nanoparticles doped with different amounts of manganese ions (W1−x Mn x O3, where x = 0.011, 0.022 and 0.044) were synthesised by hydraulic acid-assisted precipitation, followed by thermal calcinations. The powders were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic measurements. The monoclinic structure at room temperature (∼293 K) found for un-doped WO3 was preserved even with Mn doping. However, doping with Mn ions caused decease in unit-cell volume and slight increase in crystallite size (CS) of host WO3. The hydrogenation was observed to corrode the crystallites without changing in crystalline structure. Controllable room-temperature ferromagnetic (RT-FM) properties were obviously observed with hydrogenated WO3 doped with Mn. In addition, there existed an optimum doping concentration of Mn in WO3 to obtain superior FM properties. Therefore, Mn-doped WO3 nanopowders, owning to these amazingly tunable magnetic properties, could be considered a potential candidate for many applications partially required FM properties such as optical phosphors and catalysts.

Keywords

Mn-doped WO3 Created ferromagnetism Hydrogen treatment 

References

  1. 1.
    Zhao, P.: Syntheses, structures and characterizations of novel arsenotungstates. Ph.D dissertation University of Bremen-Germany (2015)Google Scholar
  2. 2.
    El-Nouby, M.S.: Structure control and characterization of tungsten oxide nanoparticles by aqueous solution methods. Doctoral dissertation, Osaka University, OUKA (2014)Google Scholar
  3. 3.
    Yan, H., Zhang, X., Zhou, S., Xie, X., Luo, Y., Yu, Y.: Synthesis of WO3 nanoparticles for photocatalytic O2 evolution by thermal decomposition of ammonium tungstate loading on g-C3 N 4. J. Alloy. Compds. 509, L232–L235 (2011)CrossRefGoogle Scholar
  4. 4.
    Lee, K., Seo, W.S., Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)CrossRefGoogle Scholar
  5. 5.
    Lee, S., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H., Dillon, A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006)CrossRefGoogle Scholar
  6. 6.
    Lassner, E., Schubert, W.: Tungsten properties, chemistry, technology of the element alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New York (1999)Google Scholar
  7. 7.
    Yamamoto, S., Takano, K., Inouye, A., Yoshikawa, M.: Effects of composition and structure on gasochromic coloration of tungsten oxide films investigated with XRD and RBS. Nucl. Instr. and Meth. Phys. Res. B 262, 29–32 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Yaacob, M.H., Breedon, M., Kalantar-Zadeh, K., Wlodarski, W.: Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sens. Actuators B: Chem. 137, 115–120 (2009)CrossRefGoogle Scholar
  9. 9.
    Reyes, L.F., Hoel, A., Saukko, S., Hessler, P., Lantto, V., Granqvist, C.G.: Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition. Sens. Actuators B: Chem. 117, 128–134 (2006)CrossRefGoogle Scholar
  10. 10.
    Kim, T.S., Kim, Y.B., Yoo, K.S., Sung, G.S., Jung, H.J.: Sensing characteristics of dc reactive sputtered WO3 thin films as an NO x gas sensor. Sens. Actuators B: Chem. 62, 102–108 (2000)CrossRefGoogle Scholar
  11. 11.
    Khatko, V., Vallejos, S., Calderer, J., Gracia, I., Cane, C., Llobet, E., Correig, X.: Micro-machined WO3-based sensors with improved characteristics. Sens. Actuators B: Chem. 140, 356–362 (2009)CrossRefGoogle Scholar
  12. 12.
    Castro-Hurtadoa, I., Tavera, T., Yurrita, P., Perez, N., Rodriguez, A., Mandayo, G.G., Castano, E.: Structural and optical properties of WO3 sputtered thin films nano-structured by laser interference lithography. Appl. Surf. Sci. 276, 229–236 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Therese, H.A., Li, J., Kolb, U., Tremel, W.: Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sci. 7, 67–72 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Djaoued, Y., Priya, S., Balaji, S.: Low temperature synthesis of nanocrystalline WO3 films by sol–gel process. J. Non Cryst. Solids 354, 673–679 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Kida, T., Nishiyama, A., Yuasa, M., Shimanoe, K., Yamazoe, N.: Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens. Actuators B: Chem. 135, 568–574 (2009)CrossRefGoogle Scholar
  16. 16.
    Wang, G., Ji, Y., Huang, X., Yang, X., Gouma, P., Dudley, M.: Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)CrossRefGoogle Scholar
  17. 17.
    Yang, B., Li, H., Blackford, M., Luca, V.: Novel low-density mesoporous WO3 films prepared by electrodeposition. Curr. Appl. Phys. 6, 436–439 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Hariharan, V., Aroulmoji, V., Prabakaran, K., Gnanavel, B., Parthibavarman, M., Sathyapriya, R., Kanagaraj, M.: Magnetic and electrochemical behaviour of cobalt doped tungsten oxide (WO3) nanomaterials by microwave irradiation method. J. Alloys Compds 689, 41–47 (2016)CrossRefGoogle Scholar
  19. 19.
    Kaminski, A., Sarma, S.D.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002). 4 pagesADSCrossRefGoogle Scholar
  20. 20.
    Wolff, P.A., Bhatt, R.N., Durst, A.C.J.: Polaron-polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196–5198 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Lewis, E.A., Le, D., Murphy, C.J., Jewell, A.D., Mattewra, M.F.G., Liriano, M.L., Rahman, T.S., Sykes, E.C.H.: Dissociative hydrogen adsorption on close-packed cobalt nanoparticle surfaces. J. Phys. Chem. C 116, 25868–25873 (2012)CrossRefGoogle Scholar
  22. 22.
    Pozzo, M., Alfe, D.: Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces. Int. J. Hydrog. Energy 34, 1922–1930 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Wua, E., Li, W., Li, J.: Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption. Int. J. Hydrog. Energy 37, 1509–1517 (2012)CrossRefGoogle Scholar
  24. 24.
    Zaluska, A., Zaluski, L., Strom-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compds 288, 217–225 (1999)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    Kittel, C.: Introduction to solid state physics, 7th edn., p 425. Wiley, New York (1996)Google Scholar
  28. 28.
    Torrent, J., Barron, V.: Encyclopedia of surface and colloid science. Marcel Dekker, Inc., New York (2002)Google Scholar
  29. 29.
    Johansson, M.B., Baldissera, G., Valyukh, I., Persson, C., Arwin, H., Niklasson, G.A., Osterlund, L.: Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations. J. Phys.: Condens. Matter 25, 205502 (2013). 11 ppADSGoogle Scholar
  30. 30.
    Tauc, J., Abelesn, F (eds.): Optical properties of solids. North Holland (1969)Google Scholar
  31. 31.
    Cole, B., Marsen, B., Miller, E., Yan, Y., To, B., Jones, K., Al-Jassim, M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008)CrossRefGoogle Scholar
  32. 32.
    Song, H., Li, Y., Lou, Z., Xiao, M., Hu, L., Ye, Z., Zhu, L.: Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B: Environ. 166–167, 112–120 (2015)CrossRefGoogle Scholar
  33. 33.
    Shen, Y., Yan, P., Yang, Y., Hu, F., Xiao, Y., Pan, L., Li, Z.: Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloys Compds 629, 27–31 (2015)CrossRefGoogle Scholar
  34. 34.
    Hariharan, V., Aroulmoji, V., Prabakaran, K., Gnanavel, B., Parthibavarman, M., Sathyapriya, R., Kanagaraj, M.: Magnetic and electrochemical behaviour of cobalt doped tungsten oxide (WO3) nanomaterials by microwave irradiation method. J. Alloys Compds 689, 41–47 (2016)CrossRefGoogle Scholar
  35. 35.
    Dakhel, A.A.: Hydrogenation tuned the created ferromagnetic properties of Ni-doped nano-ZnO. Appl. Phys. A 123, 214 (2017). 8 pagesADSCrossRefGoogle Scholar
  36. 36.
    Gerosa, M., Bottani, C.E., Caramella, L., Onida, G., Di Valentin, C., Pacchioni, G.: Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J. Chem. Phys. 143, 134702 (2015). 9 pagesADSCrossRefGoogle Scholar
  37. 37.
    Aguir, K., Lemire, C., Lollman, D.B.B.: Electrical properties of reactively sputtered WO3 thin films as ozone gas sensor. Sens. Actuators B 84, 1–5 (2002)CrossRefGoogle Scholar
  38. 38.
    Wang, H., Dong, X., Peng, S., Dong, L., Wang, Y.: Improvement of thermoelectric properties of WO3 ceramics by ZnO addition. J. Alloys Compds 527, 204–209 (2012)CrossRefGoogle Scholar
  39. 39.
    Polaczek, A., Pekala, M., Obuszko, Z.: Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. J. Phys.: Condens. Matter 6, 7909–7919 (1994)ADSGoogle Scholar
  40. 40.
    The official web page of the University of the West Indies at Mona, Jamaica. The Department of Chemistry. http://wwwchem.uwimona.edu.jm/spectra/MagMom.html. Accessed 22 Nov 2017
  41. 41.
    Seo, S.-Y., Kwak, C.-H., Kim, S.-H., Park, S.-H., Lee, I.-J., Han, S.-W.: Synthesis and characterization of ferromagnetic Zn1−xCoxO films. J. Cryst. Growth 346, 56–60 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Gao, Q., Dai, Y., Li, C., Yang, L., Li, X., Cui, C.: Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. Ixygen J. Alloys Compds 684, 669–676 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsCollege of Science University of BahrainManamaKingdom of Bahrain

Personalised recommendations