Advertisement

Microwave-Hydrothermal Synthesis of Y3Fe5O12 Nanoparticles: Sintering Temperature Effect on Structural, Magnetic and Dielectric Properties

  • T. Ramesh
  • G. Narayana Rao
  • T. Suneetha
  • R. S. Shinde
  • V. Rajendar
  • S. R. Murthy
  • S. Arun Kumar
Original Paper

Abstract

Herein, we report a facile microwave-assisted hydrothermal method for the preparation of yttrium iron garnet (YIG, Y3Fe5O12)nanocrystals and realized the synergy between its structural and magnetic properties. The as-prepared powder thermal stability was characterized in detail by using thermogravimetric-differential thermal analysis (TG-DTA). The synthesized powder was microwave sintered at six different temperatures ranging from 973 to 1373 K for 60 min and characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Magnetic properties were investigated by vibrating-sample magnetometer (VSM) and ferromagnetic resonance (FMR) studies. The frequency variation of dielectric and magnetic properties was measured in the frequency range of 100 kHz–1.8 GHz. The observed magnetic and dielectric parameters such as saturation magnetization, coercivity, permeability, linewidth, dielectric constant and magnetodielectric losses are strongly affected by sintering temperature. The saturation magnetization and coercivity of YIG were found in the range 14.4–28.0 emu/g and 35–87 Oe, respectively. Furthermore, the FMR linewidth decreases from 844 to 204 Oe. This analysis undoubtedly demonstrates that the synthesis method and sintering temperature have the prominent effect on the electrical and magnetic properties of YIG and would be very useful for the garnet-based microwave device applications.

Keywords

Microwave-hydrothermal Garnet Microwave sintering Magnetic properties Dielectric properties 

References

  1. 1.
    Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035– 2047 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Popov, M.A., Zavislyak, I.V., Srinivasan, G.: A magnetic field tunable yttrium iron garnet millimeter-wave dielectric phase shifter: theory and experiment. Prog. Electromag. Res. C 25, 145–157 (2012)CrossRefGoogle Scholar
  3. 3.
    Kaa, B.: A simple approach to YIG oscillators. VHF Commun. 4, 217–224 (2004)Google Scholar
  4. 4.
    Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N.: Ferrite devices and materials. IEEE Trans. Microw. Theory Tech. 50, 721–737 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Özgür, U., Alivov, Y., Morkoç, H.: Microwave ferrites. Part 2: passive components and electrical tuning. J. Mater. Sci.: Mater. Electron. 20, 911–952 (2009)Google Scholar
  6. 6.
    Sharma, V., Saha, J., Patnaik, S., Kuanr, B.K.: Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles—microwave material. AIP Adv. 7, 056405–1-6 (2017)Google Scholar
  7. 7.
    Liu, Y., Wang, X., Zhu, J., Huang, R., Tang, D.: Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method. Chin. Phys. B. 26(5), 057501–1-5 (2017)Google Scholar
  8. 8.
    Modi, K.B., Dolia, S.N., Sharma, P.U.: Effect of mechanical milling induced strain and particle size reduction on some physical properties of polycrystalline yttrium iron garnet. Ind. J. Phys. 89(5), 425 (2015)CrossRefGoogle Scholar
  9. 9.
    Wan Ali, W.F.F., Ain, M.F., Ahmad, Z.A.: Effect of sintering properties on the formation of yttrium iron garnet by powder preparation method for microwave ferrite resonator antenna. JNRT 9(2), 47–55 (2012)Google Scholar
  10. 10.
    Emami, S., Hosseini, H.R.M., Dolati, A.: The effect of cationic and anionic surfactants on the nanostructure and magnetic properties of yttrium iron garnet (YIG) synthesized by a sol-gel auto combustion method. Rus. J. Non-Ferrous Met. 53(4), 308–314 (2012)CrossRefGoogle Scholar
  11. 11.
    Yang, Q., Zhang, H., Liu, Y., Wen, Q., Jia, L.: The magnetic and dielectric properties of microwave sintered yttrium iron garnet. Mater. Lett. 62, 2647–2650 (2008)CrossRefGoogle Scholar
  12. 12.
    Komarneni, S., D’Arrigo, M.C., Leionelli, C., Pellacani, G.C., Katsuki, H.: Microwave-hydrothermal synthesis of nanophase ferrites. J. Am. Ceram. Soc. 81, 3041–43 (1998)CrossRefGoogle Scholar
  13. 13.
    Ponzoni, C., Cannio, M., Boccaccini, D.N., Bahl, C.R.H., Agersted, K., Leonelli, C.: Ultrafast microwave hydrothermal synthesis and characterization of Bi1−xLaxFeO3 micronized particles. Mater. Chem. Phys. 162, 69–75 (2015)CrossRefGoogle Scholar
  14. 14.
    Komarneni, S., Li, Q.H., Roy, R.: Microwave-hydrothermal processing of layered anion exchangers. J. Mater. Res. 11, 1866–1869 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Ramesh, T., Shinde, R.S., Murthy, S.R.: Synthesis and characterization of nanocrystalline Ni0.94Co0.03Mn0.04Cu0.03Fe1.96−xAlxO4 ferrites for microwave device applications. J. Magn. Magn. Mater. 345, 276–281 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Bhaskar, A., Murthy, S.R.: Effect of sintering temperature on the electrical properties of Mn (1 %) added MgCuZn ferrites by microwave sintering method. J Mater Sci. Mater Electron. 24, 3292–3298 (2013)CrossRefGoogle Scholar
  17. 17.
    Praveena, K., Sadhana, K., Srinath, S., Murthy, S.R.: Effect of pH on structural and magnetic properties of nanocrystalline Y3Fe5O12 by aqueous co-precipitation method. Mater. Res. Innov. 18, 69–75 (2014)CrossRefGoogle Scholar
  18. 18.
    Nazlan, R., Hashim, M., Abdullah, N.H., Ibrahim, I., Ismail, I.: Influence of milling time on the crystallization, morphology and magnetic properties of polycrystalline yttrium iron garnet. Adv. Mater. Res. 501, 324–328 (2012)CrossRefGoogle Scholar
  19. 19.
    Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)CrossRefGoogle Scholar
  20. 20.
    Baumgarter, C.E.: Fast firing and conventional sintering of lead zirconate titanate ceramic. J. Am. Ceram Soc. 71, C350–C353 (1988)Google Scholar
  21. 21.
    Tian, Y.L., Johnson, D.L., Brodwin, M.E.: Ultrafine microstructure of Al2O3 produced by microwave sintering. American Ceramic Society Inc., United States (1988)Google Scholar
  22. 22.
    Garcia, D.E., Seidel, J., Janssen, R., Claussen, N.: Fast firing of alumina. J. Am. Ceram. Soc. 15, 935–938 (1993)CrossRefGoogle Scholar
  23. 23.
    Lin, F.J.T., Jonghe, L.C., de Rahaman, M.N.: Initial Coarsening and microstructural evolution of fast-fired and MgO-doped Al2O3. J. Am. Ceram. Soc. 80, 2891–2896 (1997)CrossRefGoogle Scholar
  24. 24.
    Yang, Q., Zhang, H., Liu, Y., Wen, Q., Jia, L.: The magnetic and dielectric properties of microwave sintered yttrium iron garnet. Mater. Lett. 62, 2647–2650 (2008)CrossRefGoogle Scholar
  25. 25.
    Siao, Y.J., Qi, X., Lin, C.R., Huang, J.C.A.: Dielectric and magnetic properties of Y3−xTbxFe5O12 ferrimagnets. J. Appl. Phys. 11107A521-5 (2012)Google Scholar
  26. 26.
    Rezlescu, N., Rezlescu, E.: Dielectric properties of copper containing ferrites. Phys. Stat. Sol. (A) 23, 575–582 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    Irvine, J.T.S., Huanosta, A., Valenzuela, R., West, A.R.: Electrical properties of polycrystalline nickel zinc ferrites. J. Am. Ceram. Soc. 73, 729–732 (1990)CrossRefGoogle Scholar
  28. 28.
    Tsutaoka, T., Kasagi, T., Hatakeyama, K.: Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field. J. Appl. Phys. 110, 053909–1-12 (2011)CrossRefGoogle Scholar
  29. 29.
    Polder, D.: Ferrite materials. Inst. Electron. Eng. Part II(97), 246–256 (1950)Google Scholar
  30. 30.
    George, M., John, A.M., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Zheng, M., Wu, X.C., Zou, B.S., Wang, Y.J.: Magnetic properties of nanosized MnFe2O4 particles. J. Magn. Magn. Mater. 183, 152–156 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Musa, M.A., Osman, N.H., Hassan, J., Zangina, T.: Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YALG) nanoferrite via sol-gel synthesis. Results Phys. 7, 1135–1142 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Akhtar, M.N., Sulong, A.B., Azhar Khan, M., Ahmad, M., Murtaza, G., Raza, M.R., Raza, R., Saleem, M., Kashif, M.: Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425–431 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Mangalaraja, R.V., Ananthakumar, S., Manohar, P., Gnanam, F.D.: Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique. J. Magn. Magn. Mater. 253, 56–64 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Sujatha, C. h., Reddy, K.V., SowriBabu, K., RamaChandra Reddy, A., Rao, K.H.: Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39(3), 3077–3086 (2013)CrossRefGoogle Scholar
  36. 36.
    Jiang, X., Wang, W., Yu, Z., Sun, K., Lan, Z., Zhang, X., Harris, V.G.: Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped LiZn ferrite. AIP Adv. 7, 056106–1-5 (2017)Google Scholar
  37. 37.
    Hoeppe, U., Benner, H.: Microstructure-related relaxation and spin-wave linewidth in polycrystalline ferromagnets. Phys. Rev. B 71, 144403–1-7 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsBVRIT Hyderabad College of Engineering for WomenHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMaharashtraIndia
  3. 3.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  4. 4.Accelerator Magnet Technology DivisionRRCATIndoreIndia
  5. 5.Department of Electronic EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  6. 6.Department of PhysicsOsmania UniversityHyderabadIndia
  7. 7.MEMS and Nanotechnology LaboratoryChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations