Skip to main content
Log in

First-Principles Calculations of Acoustic and Anharmonic Properties of Ferromagnetic Cu2MnZ (Z = Al and In) Heusler Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The acoustic and anharmonic properties of ferromagnetic Cu2MnZ (Z = Al and In) Heusler alloys have been investigated by first-principles calculations method. The obtained lattice parameters, magnetic moments, elastic properties are found to be in good agreement with the available experimental values. From the elastic properties, the sound velocities and the related Debye temperatures and minimum thermal conductivities have been obtained for the two alloys. The sound velocities and thermal conductivities of both alloys are found to show significant anisotropy, and the Cu2MnAl with small density and large elastic constants has large sound velocities, high Debye temperature, and large thermal conductivities. Also, the effective second-order elastic constants, generalized Grüneisen constants, and nonlinear ultrasonic parameters to characterize anharmonic properties have been studied for the two alloys. These predictions on the acoustic and anharmonic properties can provide a valuable guidance or reference for further related investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Graf, T., Parkin, S.S.P., Felser, C.: Heusler compounds-a material class with exceptinal properteis. IEEE Trans. Magn. 47, 367–373 (2011)

    Article  Google Scholar 

  2. Graf, T., Casper, F., Winterlik, J., Balke, B., Fecher, G.H., Felser, C.: Crystal structure of new Heusler compounds. Z. Anorg. Allg. Chem. 635, 976–981 (2009)

    Article  Google Scholar 

  3. Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  4. Kandpal, H.C., Fecher, G.H., Felser, C: Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507–1523 (2007)

    Article  ADS  Google Scholar 

  5. Ameri, M., Touia, A., Khenata, R., Al-Douri, Y., Baltache, H.: Structural and optoelectronic properties of NiTiX and CoVX (X = Sb and Sn) half-Heusler compounds: an ab initio study. Optik 124, 570–574 (2013)

    Article  ADS  Google Scholar 

  6. Missoum, A., Seddik, T., Murtaza, G., Khenata, R., Bouhemadou, A., Al-Douri, Y., Abdiche, A., Meradji, H., Baltache, H.: Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ (Z = Al, Ga). Can. J. Phys. 92, 1105–1112 (2014)

    Article  ADS  Google Scholar 

  7. Abderrahim, B., Ameri, M., Bensaid, D., Azaz, Y., Doumi, B., Al-Douri, Y., Benzoudji, F.: Half-metallic magnetism of quaternary Heusler compounds Co2Fe x Mn1−x Si(x = 0, 0.5, and 1.0):first-principles calculations. J. Supercond. Nov. Magn. 29, 277–283 (2016)

    Article  Google Scholar 

  8. Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)

    Article  Google Scholar 

  9. Yahiaoui, I.E., Lazreg, A., Dridi, Z., Al-Douri, Y., Bouhafs, B.: Electronic and magnetic properties of Co2CrGa1−x Si x Heusler alloys. J. Supercond. Nov. Magn. 30, 421–424 (2017)

    Article  Google Scholar 

  10. Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbah, S., Al-Douri, Y.: Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. https://doi.org/10.1016/j.jmmm.2017.06.048 (2017)

  11. Amrich, O., Monir, M.E.A., Baltach, H., Bin Omran, S., Sun, X.W., Wang, X., Al-Douri, Y., Bouhemadou, A., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-017-4206-2 (2017)

  12. Kim, K., Kwon, S.J., Kim, W.T.: Characterization of Heusler alloy thin film, Cu2MnAl and Co2MnSi, deposited by co-sputtering method. Phys. Status. Solidi 214, 1557–1560 (2004)

    Article  Google Scholar 

  13. Erb, D., Nowak, G., Westerholt, K., Zabel, H.: Thin films of the Heusler alloys Cu2MnAl and Co2MnSi: recovery of ferromagnetism via solid-state crystallization from the x-ray amorphous state. J. Phys D: Appl. Phys. 43, 285001–285009 (2010)

    Article  Google Scholar 

  14. Geiersbach, U., Bergmann, A., Westerholt, K.: Structural, magnetic and magnetotransport properties of thin films of the Heusler alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. J. Magn. Magn. Mater. 240, 546–549 (2002)

    Article  ADS  Google Scholar 

  15. Heusler, F.: Über magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219 (1903)

    Google Scholar 

  16. Michelutti, B., Perrier de la Bathie, R., du Tremolet de Lacheisserie, E., Waintal A.: Magnetiztion, magnetocrystalline anisotropy, magnetostriction and elastic constants of the Heusler alloy: Cu2MnAl. Solid State Commun. 25, 163–168 (1978)

    Article  ADS  Google Scholar 

  17. Rai, D.P., Thapa, R.K.: Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys. Compd. 612, 355–360 (2014)

    Article  Google Scholar 

  18. Jalilian, J.: Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound’. J. Alloys. Compd. 626, 277–279 (2015)

    Article  Google Scholar 

  19. Wang, H., Li, M.: Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Phys. Rev. B 79, 224102–224111 (2009)

    Article  ADS  Google Scholar 

  20. Wang, C., Gu, J., Zhang, W., Sun, B., Liu, D., Liu, G.: Nonlinear elastic response anharmonic properties of MgO single crystal: first-principles investigation. Comput. Mater. Sci. 124, 375–383 (2016)

    Article  Google Scholar 

  21. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    Article  ADS  MATH  Google Scholar 

  22. Thurston, R., Brugger, K.: Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 135, 3 (1964)

    Article  ADS  MATH  Google Scholar 

  23. Brugger, K.: Thermodynamic definition of higher order elastic coefficients. Phys. Rev. 133, 1611–1612 (1964)

    Article  ADS  MATH  Google Scholar 

  24. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)

    Article  ADS  Google Scholar 

  25. Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  26. Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  27. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  28. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  30. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  31. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. Uemura, S., Maruyama, H., Kawamura, N., Yamazaki, H., Nagamatsu, S., Fujikawa, T.: Electronic states in Cu2MnX(X=Al, In, and Sn) Heusler alloy studied by XMCD and multiple scattering calculations. J. Synchrotron Radiat. 8, 452–454 (2001)

    Article  Google Scholar 

  33. Kudryavtsev, Y.V., Oksenenko, V.A., Lee, N.N., Lee, Y.P., Rhee, J.Y., Dubowik, J.: Effect of structural disorder on some physical properties of the Cu2MnAl Heusler alloy films. J. Appl. Phys. 97, 113903–113910 (2005)

    Article  ADS  Google Scholar 

  34. Krumme, B., Herper, H.C., Erb, D., Weis, C., Antoniak, C., Warland, A., Westerholt, K., Entel, P., Wende, H.: Induced magnetic Cu moments magnetic ordering in Cu2MnAl thin films on MgO(001) observed by XMCD. J. Phys. D: Appl. Phys. 44, 415004–415009 (2011)

    Article  Google Scholar 

  35. Felcher, G.P., Cable, J.W., Wilkinson, M.K: The magnetic moment distribution in Cu2MnAl. J. Phys. Chem. Solid. 24, 1663–1665 (1963)

    Article  ADS  Google Scholar 

  36. Natera, M.G., Murthy, M.R.L.N., Begum, R.J., Satya Murthy, N.S.: Atomic and magnetic structure of the Heusler alloys Pd2MnGe, Pd2MnSn, Cu2MnIn, and Co2MnSb. Phys. Stat. Sol. (a) 3, 959–964 (1970)

    Article  ADS  Google Scholar 

  37. Chawla, M.: Electronic, magnetic and fermi surface properties Of Cu2MnX (X=Al, In, Sn): ab-initio study. Masters thesis, Indian Institute of Technology Hyderabad (2013)

  38. Clementi, E., Raimondi, D.L., Reinhardt, W.P.: Atomic screening constants from SCF functions. II. atoms with 37 to 86 electrons. J. Chem. Phys. 47, 1300–1307 (1967)

    Article  ADS  Google Scholar 

  39. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)

    Article  ADS  Google Scholar 

  40. Hill, R: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  41. Voigt, W.: Lehrbuch der kristallphysik. Taubner, Leipzig (1928)

    MATH  Google Scholar 

  42. Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Article  Google Scholar 

  43. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 55504–5507 (2008)

    Article  ADS  Google Scholar 

  44. Pugh S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  45. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: In: Frantsevich, I.N. (ed.) Elastic Constants and Elastic Moduli of Metals and Insulators handbook, pp 60–180. Naukova Dumka, Kiev (1983)

  46. Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)

    Article  Google Scholar 

  47. Singh, D., Pandey, D.K.: Ulstasonic investigations in intermetallics. Pramana 72, 389–398 (2009)

    Article  ADS  Google Scholar 

  48. Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    Article  ADS  Google Scholar 

  49. Schreiber, E., Anderson, O.L., Soga, N.: Elastic constants and their measurements. McGraw, New York (1973)

    Google Scholar 

  50. Fenander, N.G., Wiktorin, L., Mayers, H.P: The low temperature specific heat of the heusler alloys Cu2MnAl and Cu2MnSn. J. Phys. Chem. Solids 29, 1973–1976 (1968)

    Article  ADS  Google Scholar 

  51. Cahill, D.G., Pohl, R.O.: Lattice vibrations and heat transport in crystals and glasses. Ann. Rev. Phys. Chem. 39, 93–121 (1988)

    Article  ADS  Google Scholar 

  52. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    Article  ADS  MATH  Google Scholar 

  53. Feng, H.F., Wu, X.Z., Gan, L.Y., Wang, R., Wei, Q.Y: The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure. J. Supercond. Nov. Magn. 27, 1187–1194 (2014)

    Article  Google Scholar 

  54. Liu, L.L., Wu, X.Z., Wang, R., Gan, L.Y., Wei, Q.Y.: Nonlinear elastic properties of superconducting MNNi3(M = Zn, Cd, Mg, Al, Ga, and In) from first principles. J. Supercond. Nov. Magn. 27, 1851–1859 (2014)

    Article  Google Scholar 

  55. Wang, K., Wu, X.Z., Li, W.G., Wang, R., Wei, Q.Y.: Third order elastic constants and Debye temperature of MgB2 under different pressure: first-principles methods. J. Supercond. Nov. Magn. 28, 1483–1489 (2015)

    Article  Google Scholar 

  56. Wen, Y.F., Wu, D.L., Cao, R.P., Liu, L.L., Song, L.: The third-order elastic moduli and debye temperature of SrFe2As2 and BaFe2As2: a first-principles study. J. Supercond. Nov. Magn. 30, 1749–1756 (2017)

    Article  Google Scholar 

  57. Mayer, A.P., Wehner, R.K.: Calculation of güneisen constants in Si. Phys. Stat. Sol. (b) 126, 91–103 (1984)

    Article  ADS  Google Scholar 

  58. Brugger, K.: Generalized güneisen parameters in the anisotropic Debye model. Phys. Rev. 137, A1826–A1827 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Wallace, D.C.: Thermodynamics of Crystals. Wiley, New York (1972)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of China (51661013, 11564019, 11464020), the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(JZB15007), and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJ1710252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zeng, X., Ye, Y. et al. First-Principles Calculations of Acoustic and Anharmonic Properties of Ferromagnetic Cu2MnZ (Z = Al and In) Heusler Alloys. J Supercond Nov Magn 31, 1847–1856 (2018). https://doi.org/10.1007/s10948-017-4414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4414-9

Keywords

Navigation