Magnetic and Transport Properties of Co1+δ Sb Single Crystals

  • Cong Xian
  • Yihao Wang
  • Jian Wang
  • Lei Zhang
  • Yuyan Han
  • Liang Cao
  • Yimin Xiong
Original Paper


For some 3d transition-metal monopnictides, their physical properties are strongly affected by interstitial 3d transition-metal atoms, such as Fe1+δSb, in which the electrical transport, magnetic properties and carrier concentrations have strong dependence on the composition of interstitial Fe (Shiomi et al. Phys. Rev. Lett. 108(5), 056601 2012), Therefore, it is important to study the influence of interstitial Co on the physical properties of Co1+δSb. Here, the magnetic and transport properties have been studied on Co1.05Sb single crystals. The magnetic and electrical transport measurements reveal that stoichiometric CoSb is a nonmagnetic metal. The interstitial Co in this compound exhibits a paramagnetic behaviour and weak antiferromagetic correlations. However, it has no effect on transport properties. A very low magnetoresistance (≤ 0.2%) was observed under the magnetic field up to 14 T, which suggests that Co1+δSb could be a potential material of electronic devices for the application at a high magnetic field.


Antiferromagetic correlations Fermi liquid behaviour Low magnetoresistance 



This work is supported by the Ministry of Science and Technology of China (National Key Research and Development Program Nos. 2016YFA0300404, 2017YFA0402900) and the National Natural Science Foundation of China (Grant Nos. U1432138, 11474288, 11604344, 11574322, 21503233, 11574317). Y.X. is thankful for the support of the Hundred Talents Program of the Chinese Academy of Sciences.

Supplementary material

10948_2017_4412_MOESM1_ESM.docx (936 kb)
(DOCX 935 KB)


  1. 1.
    Shiomi, Y., Mochizuki, M., Kaneko, Y., Tokura, Y.: Phys. Rev. Lett. 108(5), 056601 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Wu, W., Cheng, J., Matsubayashi, K., Kong, P., Lin, F., Jin, C., Wang, N., Uwatoko, Y., Luo, J.: Nat. Commun. 5, 5508 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Cheng, J.G., Matsubayashi, K., Wu, W., Sun, J.P., Lin, F.K., Luo, J.L., Uwatoko, Y.: Phys. Rev. Lett. 114(11), 117001 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Gama, S., Coelho, A.A., de Campos, A., Carvalho, A.M.G., Gandra, F.C., von Ranke, P.J., de Oliveira, N.A.: Phys. Rev. Lett. 93(23), 237202 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Caron, L., Miao, X.F., Klaasse, J.P., Gama, S., Brück, E.: Appl. Phys. Lett. 103(11), 112404 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Akinaga, H., Suzuki, Y., Tanaka, K., Ando, K., Katayama, T.: Appl. Phys. Lett. 67(1), 141–143 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    De Boeck, J., Oesterholt, R., Van Esch, A., Bender, H., Bruynseraede, C., Van Hoof, C., Borghs, G.: Appl. Phys. Lett. 68(19), 2744–2746 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Shimizu, H., Miyamura, M., Tanaka, M.: Appl. Phys. Lett. 78(11), 1523–1525 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Ono, K., Okabayashi, J., Mizuguchi, M., Oshima, M., Fujimori, A., Akinaga, H.: J. Appl. Phys. 91(10), 8088–8092 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Xie, W.H., Liu, B.G., Pettifor, D.G.: Phys. Rev. B 68(13), 134407 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Li, X.X., Yang, J.L.: Natl. Sci. Rev. 3(3), 365–381 (2016)CrossRefGoogle Scholar
  12. 12.
    Chen, T., Rogowski, D., White, R.M.: J. Appl. Phys. 49(3), 1425–1427 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    Coehoorn, R., Haas, C., De Groot, R.A.: Phys. Rev. B 31(4), 1980 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    Aldous, J.D., Burrows, C.W., Sánchez, A.M., Beanland, R., Maskery, I., Bradley, M.K., dos Santos Dias, M., Staunton, J.B., Bell, G.R.: Phys. Rev. B 85(6), 060403 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Akinaga, H., Mizuguchi, M., Ono, K., Oshima, M.: Appl. Phys. Lett. 76(3), 357–359 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Chong, X., Jiang, Y., Zhou, R., Feng, J.: Sci. Rep. 6, 21821 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Allen, J.W., Stutius, W.: Solid State Commun. 20(6), 561–564 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Liu, B.G.: Phys. Rev. B 67(17), 172411 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Amornpitoksuk, P., Ravot, D., Mauger, A., Tedenac, J.C.: Phys. Rev. B 77(14), 144405 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Kobayashi, H., Kageshima, M., Kimura, N., Aoki, H., Oohigashi, M., Motizuki, K., Kamimura, T.: J. Magn. Magn. Mater. 272, E247–E248 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Xie, J., Cao, G.S., Zhao, X.B., Zhao, M.J., Zhong, Y.D., Deng, L.Z., Guan, Y.H., Wu, Z.T.: J. Mater. Sci. 39(3), 1105–1107 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Ahmed, A., Han, S.: J. Alloys Compd. 686, 540–548 (2016)CrossRefGoogle Scholar
  23. 23.
    Chen, T., Mikkelsen, J.C., Charlan, G.B.: J. Cryst. Growth 43(1), 5–12 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    Lide, D.R.: CRC Handbook of Physics and Chemistry, vol. 76, pp 1995–1996. CRC Press, Boca Raton (2001)Google Scholar
  25. 25.
    Hardy, F., Böhmer, A.E., Aoki, D., Burger, P., Wolf, T., Schweiss, P., Heid, R., Adelmann, P., Yao, Y.X., Kotliar, G., Schmalian, J., Meingast, C.: Phys. Rev. Lett. 111(2), 027002 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Honda, K.: Ann. Phys. 337(10), 1027–1063 (1910)CrossRefGoogle Scholar
  27. 27.
    Owen, M.: Ann. Phys. 342(4), 657–699 (1912)CrossRefGoogle Scholar
  28. 28.
    Schaniel, D., Woike, T., Kushch, L., Yagubskii, E.: Chem. Phys. 340(1), 211–216 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)zbMATHGoogle Scholar
  30. 30.
    Uher, C., Pratt, W.P. Jr.: Phys. Rev. Lett. 39(8), 491 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    Park, J., Lee, G., Wolff-Fabris, F., Koh, Y.Y., Eom, M.J., Kim, Y.K., Farhan, M.A., Jo, Y.J., Kim, C., Shim, J.H., Kim, J.S.: Phys. Rev. Lett. 107(12), 126402 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Sondheimer, E.H.: Phys. Rev. 80(3), 401 (1950)ADSCrossRefGoogle Scholar
  33. 33.
    Reitz, J.R., Overhauser, A.W.: Phys. Rev. 171(3), 749 (1968)ADSCrossRefGoogle Scholar
  34. 34.
    Satoh, K., Kakehi, Y., Uno, M., Sakurai, Y., Yotsuya, T., Ishida, T.: Jpn. J Appl. Phys. 51 (1S), 01AC07 (2012)CrossRefGoogle Scholar
  35. 35.
    Hui, Z., Tang, X., Wei, R., Hu, L., Yang, J., Luo, H., Dai, J., Song, W., Liu, X., Zhu, X., Sun, Y.: RSC Adv. 4(24), 12568–12571 (2014)CrossRefGoogle Scholar
  36. 36.
    Yotsuya, T., Kakehi, Y., Ishida, T.: Cryogenics 51(9), 546–549 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Cong Xian
    • 1
    • 2
  • Yihao Wang
    • 1
    • 2
  • Jian Wang
    • 1
  • Lei Zhang
    • 1
    • 2
  • Yuyan Han
    • 1
  • Liang Cao
    • 1
    • 2
  • Yimin Xiong
    • 1
    • 2
    • 3
  1. 1.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme ConditionsHigh Magnetic Field Laboratory of the Chinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina

Personalised recommendations