Electrochemical and Magnetic Properties of Electrospun SrTi1−x Fe x O3 (x = 0, 0.05 and 0.10) Nanofibers for Anodes of Li-Ion Batteries

  • Attaphol Karaphun
  • Songyoot Kaewmala
  • Nonglak Meethong
  • Sitchai Hunpratub
  • Ekaphan Swatsitang
Original Paper


SrTi1−x Fe x O3 (x = 0, 0.05 and 0.1) nanofibers (NFs) were fabricated by electrospinning technique. As prepared products were calcined at 800 C in argon atmosphere for 3 h to obtain a perovskite phase. The crystal structure and morphology of samples were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Electrochemical and magnetic properties of calcined NFs were studied using a potentiostat/galvanostat electrochemical cell system and vibrating sample magnetometer (VSM), respectively. XRD results showed the cubic perovskite structure of calcined samples with the diameter estimated by TEM in the range of 137.4–141.3 nm SEM micrographs revealed the linkage of crystalline grains in NFs of porous and rough surfaces. Electrochemical properties performed on coin-cell-type Li-ion batteries (LIBs) with calcined SrTi1−x Fe x O3 (x = 0.05 and 0.10) NF-based anodes showed a significant increase of the specific capacity from 305 to 431 mAh/g for the first cycle with the reversible values of 100 and 130 mAh/g, respectively. VSM measurements at room temperature (RT) indicated that calcined SrTiO3 NFs exhibited paramagnetic (PM) behavior, while calcined SrTi1−x Fe x O3 NFs displayed ferromagnetic (FM) behavior at RT with the increase of unsaturated magnetization at 10 kOe from 0.46 to 0.82 emu/g for samples with x = 0.05 and 0.10, respectively. The observed FM behavior in calcined SrTi1−x Fe x O3 (x = 0.05 and 0.1) NFs was suggested to originate from the face center exchange (FCE) mechanism owing to Fe3+ –Vo–Fe3+ couplings.


SrTi1−xFexO3 nanofibers Electrospinning technique Electrochemical and magnetic properties 


Funding Information

This work was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. The Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, is also acknowledged for partial financial support.


  1. 1.
    Languang, L., Xuebing, H., Jianqiu, L., Jianfeng, H., Minggao, O.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power. Sources. 226, 272–288 (2013)CrossRefGoogle Scholar
  2. 2.
    Subrahmanyam, G., Ermanno, M., Francesco, D.A., Enzo, D.F., Remo, P.Z., Claudio, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power. Sources. 257, 421–443 (2014)CrossRefGoogle Scholar
  3. 3.
    Andrea, P., Giovanni, B., Sergio, M., Enrico, D., Massimo, C., Mirko, P., Andreas, R., Mauro, P., Alberto, A., Karim, Z., Liberato, M., Chandramohan, G.: Etched Colloidal LiFePO4 nanoplatelets toward high-rate capable Li-ion battery electrodes. Nano. Lett. 14, 6828–6835 (2014)CrossRefGoogle Scholar
  4. 4.
    Yuming, C., Xiaoyan, L., Kyusung, P., Jie, S., Jianhe, H., Limin, Z., Yiu-Wing, M., Haitao, H., John, B.G.: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135, 16280–16283 (2013)CrossRefGoogle Scholar
  5. 5.
    Long, W., Yan, Y., Pi-Ce, C., Chun-Hua, C.: Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries. Script. Mater. 58, 405–408 (2008)CrossRefGoogle Scholar
  6. 6.
    Hu, Y.S., Kienle, L., Guo, Y.G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421–1426 (2006)CrossRefGoogle Scholar
  7. 7.
    Yang, M-C., Lee, Y.-Y., Xu, B., Powers, K., Meng, Y.S.: TiO2 flakes as anode materials for li-ion batteries. J. Power. Sources. (2012).
  8. 8.
    Lou, S., Ma, Y., Cheng, X., Gao, J., Gao, Y., Zuo, P., Du, C., Yin, G.: Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries. Chem. Commun. 51, 17293–17296 (2015)CrossRefGoogle Scholar
  9. 9.
    Nie, S., Li, C., Peng, H., Li, G., Chen, K.: Ti3+ self-doped Li4Ti5O12 nanosheets as anode materials for high performance lithium ion batteries. RSC Adv. 5, 23278–23282 (2015)CrossRefGoogle Scholar
  10. 10.
    Wu, H., Chang, S., Liu, X., Yu, L., Wang, G., Cao, D., Zhang, Y., Yang, B., She, P.: Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries. Solid. State. Ionics. 232, 13–18 (2013)CrossRefGoogle Scholar
  11. 11.
    Yi, T.-F., Jiang, L.-J., Shu, J., Yue, C.-B., Zhu, R.-S., Qiao, H.-B.: Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids. 71, 1236–1242 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, D., Wu, X., Zhang, Y., Wang, J., Yan, P., Zhang, C., He, D.: The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceramics. Int. 40, 3799–3804 (2014)CrossRefGoogle Scholar
  13. 13.
    Chen, C., Agrawal, R., Wang, C.: High performance Li4Ti5O12/si composite anodes for Li-ion batteries. Nanomaterials 5, 1469–1480 (2015)CrossRefGoogle Scholar
  14. 14.
    Derek, C.J., Amy, L.P.: Use of strontium titanate (SrTiO3) as an anode material for lithium-ion batteries. J. Power. Sources. 196, 7736–7741 (2011)CrossRefGoogle Scholar
  15. 15.
    Wu, F., Li, X., Wang, Z., Guo, H., Wu, L., Xiong, X., Wang, X.: A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. J. Alloys. Comp. 509, 3711–3715 (2011)CrossRefGoogle Scholar
  16. 16.
    Jo, C., Kim, Y., Hwang, J., Shim, J., Chun, J., Lee, J.: Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem. Mater. 26, 3508–3514 (2014)CrossRefGoogle Scholar
  17. 17.
    Park, H., Song, T., Han, H., Devadoss, A., Yuh, J., Choi, C., Paik, U.: SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem. Commun. 22, 81–84 (2012)CrossRefGoogle Scholar
  18. 18.
    Gregorio, F.O., Ricardo, A., Pedro, L., José, L.T.: Optimization of the electrochemical behavior of vapor grown carbon nanofibers for lithium-ion batteries by impregnation, and thermal and hydrothermal treatments. J. Electrochem. Soc. 152(9), A1797–A180 (2005)CrossRefGoogle Scholar
  19. 19.
    Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A.: Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16, 2393 (2006)CrossRefGoogle Scholar
  20. 20.
    Ding, Y.-L., Xie, J., Cao, G.-S., Zhu, T.-J., Yu, H.-M., Zhao, X.-B.: Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 21, 348–355 (2011)CrossRefGoogle Scholar
  21. 21.
    Jung, H.-G., Kim, J., Scrosati, B., Sun, Y.-K.: Micron-sized carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J. Power. Source. 196, 7763–7766 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Karaphun, A., Hunpratub, S., Swatsitang, E.: Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method. Microelectron. Eng. 126, 42–48 (2014)CrossRefGoogle Scholar
  23. 23.
    Karaphun, A., Hunpratub, S., Phokha, S., Putjuso, T., Swatsitang, E.: Effect of Co cations and oxygen vacancy on optical and magnetic properties of SrTi1−xCoxO3 nanoparticles prepared by the hydrothermal method. J. Mater. Sci: Mater. Electron. 28, 8294–8303 (2017)Google Scholar
  24. 24.
    Karaphun, A., Hunpratub, S., Phokha, S., Putjuso, T., Swatsitang, E.: Characterization and magnetic properties of SrTi1−xNixO3 nanoparticles prepared by hydrothermal method. Physica. B. 504, 31–38 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction, Third Ed. Prentice Hall, New Jersey (2001)Google Scholar
  26. 26.
    Merel, P., Tabbal, M., Chaker, M., Moisa, S., Margot, J.: Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Cai, H.L., Wu, X.S., Gao, J.: Effect of oxygen content on structural and transport properties in SrTiO3−x thin films. Chem. Phys. Lett. 467(4–6), 313–317 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Fuentes, S., Zarate, R.A., Chavez, E., Munõz, P., Dıáz-Droguett, D., Leyton, P.: Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J. Mater/ Sci. 45, 1448–1452 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Hu, J., Cao, E., Sun, L., Qin, H.: Vacancy induced magnetism in SrTiO3. J. Magn. Magn. Mater. 324, 1770–1775 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    He, J., Lu, X., Zhu, W., Hou, Y., Ti, R., Huang, F., Lu, X., Xu, T., Su, J., Zhu, J.: Induction and control of room-temperature ferromagnetism in dilute Fe-doped SrTiO3 ceramics. Appl. Phys. Lett. 107, 012409 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Attaphol Karaphun
    • 1
  • Songyoot Kaewmala
    • 2
  • Nonglak Meethong
    • 2
  • Sitchai Hunpratub
    • 3
  • Ekaphan Swatsitang
    • 1
    • 4
  1. 1.Nanotec - KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Materials Science and Nanotechnology Program, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Department of Physics, Faculty of ScienceUdon Thani Rajabhat UniversityUdon ThaniThailand
  4. 4.Integrated Nanotechnology Research Center, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations