Advertisement

Tunable Magnetism and Half Metallicity in Ti-Doped Heusler Alloy Co2CrAl: First-Principles Calculations

  • Yu Feng
  • Xiaohui Xu
Original Paper

Abstract

Using the first-principles calculations within density functional theory (DFT), we investigated magnetism, electronic structures, and half-metallicity stability of Heusler compound Co2Cr1−xTi x Al. Besides, the origin of the half-metallic energy gap of Co2CrAl is also revealed. With Ti concentration increases, the magnetic moment of the Cr atom linearly increases, while that of Co and Cr atoms linearly decreases The total magnetic moment of Co2Cr1−x Ti x Al agrees with the Slater–Pauling rule very well. The Fermi level shifts from a low energy zone of the minority spin gap to a highenergy zone with increasing Ti concentration x, and it lies in the middle of the gap when x = 0.5. The corresponding doped compound Co2Cr0.5Ti0.5Al therefore possesses the most stable half metallicity.

Keywords

Heusler alloy Magnetism Electronic structure Doping 

Notes

Acknowledgements

All the calculations were performed using the High Performance Computing Center of the School of Physics and Electronic Engineering of Jiangsu Normal University.

Funding Information

This work was funded by the Doctor Foundation of Jiangsu Normal University (NO. 16XLR022).

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Velev, J.P., Dowbena, P.A., Tsymbal, E.Y., Jenkins, S.J., Caruso, A.N.: Surf. Sci. Rep. 63, 25 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhu, J.G., Park, C.: Mater. Today 9, 36–45 (2006)CrossRefGoogle Scholar
  4. 4.
    Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Phys. Rev. Lett. 74, 3273 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Jullière, M.: Phys. Lett. A 54, 225 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    Kübler, J., Fecher, G.H., Felse, C.: Phys. Rev. B 76, 024414 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Miura, Y., Uchida, H., Oba, Y., Abe, K., Shirai, M.: Phys. Rev. B 78, 064416 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Feng, Y., Chen, X., Zhou, T., Yuan, H., Chen, H.: Appl. Surf. Sci. 346, 1–10 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Hirohata, A., Kurebayashi, H., Okamura, S., Kikuchi, M., Masaki, T., Nozaki, T., Tezuka, N., Inomata, K.: J. Appl. Phys. 97, 103714 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Nagao, K., Miura, Y., Shirai, M.: Phys. Rev. B 73, 104447 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Nagao, K., Shirai, M., Miura, Y.: J. Phys.: Condens. Matter 16, 5725 (2004)ADSGoogle Scholar
  13. 13.
    Nagao, K., Miura, Y., Shirai, M.: Phys. Rev. B 73, 104447 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Kudryavtsev, Y.V., Lee, Y.P, Yoo, Y.J., Seo, M.S., Kim, J.M., Hwang, J.S., Dubowik, J., Kim, K.W., Choi, E.H., Prokhnenko, O.: Eur. Phys. J. B 85, 19 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Özdoğan, K., Aktaş, B., Galanakis, I., Şaşoğlu, E.: J. Appl. Phys. 101, 073910 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Picozzi, S., Continenza, A., Freeman, A.J.: Phys. Rev. B 69, 094423 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Mauri, D., Scholl, D., Siegmann, H.C., Kay, E.: Phys. Rev. Lett. 61, 758 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    MacDonald, A.H., Jungwirth, T., Kasner, M.: Phys. Rev. Lett. 81, 705 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Shang, C.H., Nowak, J., Jansen, R., Moodera, J.S.: Phys. Rev. B 58, R2917 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Hordequin, C., Ristoiu, D., Ranno, L., Pierre, J.: Eur. Phys. J. B 16, 287 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Borca, C.N., Komesu, T., Jeong, H.K., Dowben, P.A., Ristoiu, D., Hordequin, Ch., Nozi‘eres, J.P., Pierre, J., Stadler, S., Idzerda, Y.U.: Phys. Rev. B 64, 052409 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Chen, Y., Wu, B., Feng, Y., Yuan, H.K., Chen, H.: Eur. Phys. J. B 24, 87 (2014)Google Scholar
  23. 23.
    Wu, B., Yuan, H.K., Kuang, A., Feng, Y., Chen, H.: J. Phys. D: Appl. Phys. 44, 405301 (2011)CrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory for Quantum Design of Functional Materials, School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhouChina
  2. 2.School of Physical Science and TechnologySouthwest UniversityChongqingChina

Personalised recommendations