Rich Soliton Structures for the Kraenkel-Manna-Merle (KMM) System in Ferromagnetic Materials

  • Bang-Qing Li
  • Yu-Lan Ma
Original Paper


A particular attention is paid to investigate the Kraenkel-Manna-Merle (KMM) system, which can describe the nonlinear short-wave propagation in saturated ferromagnetic materials with zero-conductivity in an external field. A class of exact soliton solutions is constructed via the generalized G /G-expansion method. Some novel soliton structures are excited by choosing the arbitrary functions in the solution as certain specific functions. Hump-soliton, cusp-soliton, loop-soliton, and kink-soliton are observed graphically. The results reveal the system theoretically possesses extremely rich soliton structures.


Kraenkel-Manna-Merle (KMM) system Ferromagnetic material Generalized G/G-expansion method Soliton structure Loop-soliton Kink-soliton 


  1. 1.
    Morrison, A.J., Parkes, E.J., Vakhnenko, V.O.: The N-loop soliton solution of the Vakhnenko equation. Nonlinearity 12, 1427 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Li, J.B.: Dynamical understanding of loop soliton solution for several nonlinear wave equations. Sci. China Series A Math. 50, 773 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Victor, K.K., Thomas, B.B., Kofane, T.C.: On high-frequency soliton solutions to a (2+1)-dimensional nonlinear partial differential evolution equation. Chin. Phys. Lett. 25, 425 (2008)CrossRefGoogle Scholar
  4. 4.
    Parkes, E.J.: Some periodic and solitary travelling-wave solutions of the short-pulse equation. Chaos Solitons Fractals 38, 154 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kuetche, V.K., Bouetou, T.B., Kofane, T.C.: On two-loop soliton solution of the Schäfer-Wayne short-pulse equation using Hirota’s method and Hodnett-Moloney approach. J. Phys. Soc. Jpn. 76, 024004 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76, 084003 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Ma, Y.L., Li, B.Q., Wang, C.: A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method. Appl. Math. Comput. 211, 102 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Li, B.Q., Ma, Y.L., Sun, J.Z.: The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation. Appl. Math. Comput. 216, 3522 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, M., Ma, Y.L., Li, B.Q.: Novel loop-like solitons for the generalized Vakhnenko equation. Chin. Phys. B 22, 030511 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Li, B.Q., Ma, Y.L., Wang, C., Xu, M.P., Li, Y.: Folded soliton with periodic vibration for a nonlinear coupled Schrödinger system. Acta Phys. Sin. 60, 060203 (2011)Google Scholar
  11. 11.
    Li, B.Q., Ma, Y.L., Mo, L.P., Fu, Y.Y.: The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation. Comput. Math. Appl. 74, 504 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ling, L.M., Feng, B.F., Zhu, Z.N.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhaqilao: The interaction solitons for the complex short pulse equation. Commun. Nonlinear Sci. Numer. Simulat. 47, 379 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dennis, M.R., King, R.P., Jack, B., O’Holleran, K., Padgett, M.J.: Isolated optical vortex knots. Nat. Phys. 6, 118 (2010)CrossRefGoogle Scholar
  15. 15.
    Rañada, A.F.: Knotted solutions of the Maxwell equations in vacuum. J. Phys. A 23, L815 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rañada, A. F., Trueba, J.L.: Two properties of electromagnetic knots. Phys. Lett. A 232, 25 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Arrayás, M., Bouwmeester, D., Trueba, J.L.: Knots in electromagnetism. Phys. Rep. 667, 1 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Irvine, W.T.M., Bouwmeester, D.: Linked and knotted beams of light. Nat. Phys. 4, 716 (2008)CrossRefGoogle Scholar
  19. 19.
    Irvine, W.T.M.: Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields. J. Phys. A 43, 474 (2001)MathSciNetGoogle Scholar
  20. 20.
    Ackerman, P.J., Smalyukh, I.I.: Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017)Google Scholar
  21. 21.
    Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D., Irvine, W.T.M.: Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Hoyos, C., Sircar, N., Sonnenschein, J.: New knotted solutions of Maxwell’s equations. J. Phys. A 48, 055204 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lau, H.W., Davidsen, J.: Linked and knotted chimera filaments in oscillatory systems. Phys. Rev. E 94, 010204 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    di Leoni, P.C., Mininni, P.D., Brachet, M.E.: Helicity, topology, and Kelvin waves in reconnecting quantum knots. Phys. Rev. A 94, 043605 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    de Klerk, A.J.J.M., van der Veen, R.I., Dalhuisen, J.W., Bouwmeester, D.: Knotted optical vortices in exact solutions to Maxwell’s equations. Phys. Rev. A 95, 053820 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ishizaka, S., Nakamura, K.: Propagation of solitons of the magnetization in magnetic nanoparticle arrays. J. Mag. Mag. Mat. 210, 15 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Ciornei, M.C., Rubi, J.M., Wegrowe, J.E.: Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys. Rev. B 83, 020410 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Fähnle, M., Steiauf, D., Illg, C.: Generalized Gilbert equation including inertial damping: derivation from an extended breathing Fermi surface model. Phys. Rev. B 84, 172403 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Dvornik, M., Vansteenkiste, A., Waeyenberge, B.V.: Micromagnetic modeling of anisotropic damping in magnetic nanoelements. Phys. Rev. B 88, 1336 (2013)CrossRefGoogle Scholar
  30. 30.
    David, C., Arumugam, B., Rajamani, A.: Modeling the elementary excitations in an alternating cubic ferrimagnetic multilayer. J. Supercond. Nov. Magn. 27, 215 (2014)CrossRefGoogle Scholar
  31. 31.
    Natarajan, K., Arumugam, B., Rajamani, A.: Solitons in dual-barrier magnetic tunnel junction. J. Supercond. Nov. Magn. 29, 1885 (2016)CrossRefGoogle Scholar
  32. 32.
    Sadeghi, N., Ketabi, S.A., Shahtahmassebi, N., Abolhassani, M.R.: Influence of soliton spin density on the spin filtering properties of magnetic poly-bipo molecule. J. Supercond. Nov. Magn. 28, 2203 (2015)CrossRefGoogle Scholar
  33. 33.
    Kraenkel, R.A., Manna, M.A., Merle, V.: Nonlinear short-wave propagation in ferrites. Phys. Rev. E 61, 976 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Nguepjouo, F.T., Victor, K.K., Kofane, T.C.: Soliton interactions between multivalued localized waveguide channels within ferrites. Phys. Rev. E 89, 063201 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Tchokouansi, H.T., Kuetche, V.K., Kofane, T.C.: On the propagation of solitons in ferrites: the inverse scattering approach. Chaos Solitons Fract. 86, 64 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Inan, I.E., Ugurlu, Y., Inc, M.: New Applications of the (G /G, 1/G)-expansion method. Acta Phys. Pol. 128, 245 (2015)CrossRefGoogle Scholar
  37. 37.
    Inc, M., Kilic, B., Ugurlu, Y.: Soliton solutions for bogoyavlensky-konoplechenko and jaulent-miodek equations via extended (G /G)-expansion method. Rom. J. Phys. 60, 1395 (2015)Google Scholar
  38. 38.
    Ma, Y.L., Li, B.Q.: A method for constructing nontraveling wave solutions for (1+1)-dimensional evolution equations. J. Math. Phys. 51, 063512 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Li, B.Q., Ma, Y.L.: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 144 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Computer and Information EngineeringBeijing Technology and Business UniversityBeijingChina
  2. 2.School of ScienceBeijing Technology and Business UniversityBeijingChina

Personalised recommendations