Role of A Cation Vacancy in the Exchange-Biased LaFeO3 Multiferroic Nanocrystals

Original Paper
  • 112 Downloads

Abstract

Multiferroic samples with the chemical formula La\(_{1-x}\square _{x}\)FeO3 (0.0 ≤ x ≤ 0.03) were successfully prepared in nanoscale by citrate nitrate combustion method. XRD data reveals crystallized single-phase orthorhombic symmetry for the prepared nanopowder. All measured magnetic parameters point to the antiferromagnetic character with weak ferromagnetic moment. The value of the molar magnetic susceptibility (χ M ) for La\(_{\mathrm {0.99}}\square _{\mathrm {0.01}}\)FeO3 reaches 3.5 times that of the undoped sample. The saturation magnetization of the samples La\(_{\mathrm {0.99}}\square _{\mathrm {0.01}}\)FeO3 and La\(_{\mathrm {0.97}}\square _{\mathrm {0.03}}\)FeO3 increased two times as compared with that of the parent one. The exchange bias (EB) effect was observed for 1st time at room temperature and originated from antiferromagnetic–ferromagnetic (AFM-FM) interface effect. Ferroelectric hysteresis loop was observed at room temperature for the samples which highlighted the presence of the ferroelectric ordering. A huge enhancement in the saturation (P s), the remnant polarization (P r), and the coercive electric field (E c) of the sample La\(_{\mathrm {0.98}}\square _{\mathrm {0.02}}\)FeO3 by 7.5, 24, and 12 times, respectively, when compared with the parent sample LaFeO3. Based on the obtained results, the investigated samples are categorized in type I multiferroics.

Keywords

Multiferroic Magnetic Ferroelectric Exchange bias Vacancy 

References

  1. 1.
    Ahmed, M.A., Selim, M.S., Arman, M.M.: Novel multiferroic La0.95Sb0.05FeO3 orthoferrite. Mater. Chem. Phys. 129, 705–712 (2011)CrossRefGoogle Scholar
  2. 2.
    Ahmed, M.A., El-Dek, S.I.: Extraordinary role of Ca2+ ions on the magnetization of LaFeO3 orthoferrite. Mater. Sci. Eng. B 128, 30–3 (2006)CrossRefGoogle Scholar
  3. 3.
    Brink, J., Khomskii, ID.: Multiferroicity due to charge ordering. J. Phys. Condensed Matter 20, 434217 (2008)CrossRefGoogle Scholar
  4. 4.
    Berchmans, L.J., Sindhu, R., Angappan, S., Augustin, C.O.: Effect of antimony substitution on structural and electrical properties of LaFeO3. J. Mater. Process. Technol. 207, 301–306 (2008)CrossRefGoogle Scholar
  5. 5.
    Cullity, B.D.: Element of X-ray Diffraction. Addison-Wesley Publishing Company Inc, London (1978)MATHGoogle Scholar
  6. 6.
    Elliott, S.R.: Ac conduction in amorphous-chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Hole, I., Tybell, T., Grepstad, J.K., Wærnhus, I., Grande, T., Wiik, K.: High temperature transport kinetics in heteroepitaxial LaFeO3 thin films. Solid-State Electron. 47, 2279–2282 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Hur, N., Park, S., Sharma, A.P., Ahn, S.J., Guha, S., Cheong, W.S.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Ita, B., Murugavel, P., Ponnambalam, V., Raju, A.R.: Proc. Magnetic properties of lanthanum orthoferrite fine powders prepared by different chemical routes. Ind. Acad. Sci. (Chem Sci.) 115, 519–524 (2003)CrossRefGoogle Scholar
  10. 10.
    Jiang, Y., Nozaki, T., Abe, S., Ochiai, T., Hirohata, A., Tezuka, N., Inomata, K.: Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve. Nat. Mater 3, 361–4 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Khomskii, D.: Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009)CrossRefGoogle Scholar
  12. 12.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Meiklejohn, W.P., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413 (1956)ADSCrossRefGoogle Scholar
  14. 14.
    Martinelli, G., Carotta, M., Ferroni, M., Sadaoka, Y., Traversa, E.: Screen printed perovskite type thin films as gas sensors for environmental monitoring. Sens. Actuators B 55, 99–110 (1999)CrossRefGoogle Scholar
  15. 15.
    Montini, T., Bevilacqua, M., Fonda, E., Casula, M.F., Lee, S., Tavagnacco, C., Gorte, R.J., Fornasiero, P.: Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3−δ mixed oxides. Chem. Mater. 21, 1768–1774 (2009)CrossRefGoogle Scholar
  16. 16.
    Mukhopadhyay, K., Mahapatra, A.S., Chakrabarti, P.K.: Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1−x)ZnxFeO3, x = 0.10, and 0.30). J. Magn. Magn. Mater. 329, 133–141 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Parida, K.M., Reddy, K.H., Martha, S., Das, D.P., Biswal, N.: Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hyd. Energy 35, 12161–8 (2010)CrossRefGoogle Scholar
  18. 18.
    Rais, A.: Absolute method of calibration of a Faraday microbalance. Measurement 35, 289–292 (2004)CrossRefGoogle Scholar
  19. 19.
    Ren, Y., Küngas, R., Gorte, R.J., Deng, C.: The effect of A-site cation (Ln = La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites. Solid State Ion. 212, 47–54 (2012)CrossRefGoogle Scholar
  20. 20.
    Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J.: Beating the superparamagnetic limit with exchange bias. Nature (London) 423, 850–3 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Su, H., Jing, L., Shi, K., Yao, C., Fu, H.: Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanopart. Res. 12, 967–974 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Shen, H., Cheng, G., Wu, A., Xu, J., Zhao, J.: Combustion synthesis and characterization of nano-crystalline LaFeO3 powder. Phys. Status Solidi A 206, 1420–4 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Thuy, N.T., LeMinh, D.: Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods advances in materials science and engineering 380306 (2012)Google Scholar
  24. 24.
    Toan, N.N., Saukko, S., Lantto, V.: Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B 327, 279–282 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Torrance, J.B., Lacorre, P., Nazzal, A.I., Ansaldo, E.J., Niedermayer, C.: Systematic study of insulator-metal transitions in perovskites RNiO3 (R = P r,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Materials Science Lab (1), Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS)Beni-Suef UniversityBeni SuefEgypt

Personalised recommendations