Advertisement

Theoretical Study of Structural, Magnetic, Elastic, Phonon, and Thermodynamic Properties of Heusler Alloys Fe2CrX (X = Al, Ga)

  • Ramesh Paudel
  • Jingchuan Zhu
Original Paper

Abstract

First-principle calculations based on generalized gradient approximation and quasi-harmonic Debye model were executed to analyze the structural, magnetic, elastic, phonon, and thermodynamic properties of Fe2CrX (X = Al, Ga) Heusler alloys. The computed lattice parameters concurred well with available experimental and theoretical data. The calculated elastic constants reveal that the Fe2CrAl is brittle and Fe2CrGa is ductile. The phonon dispersion relation of Fe2CrX (X = Al, Ga) are calculated using finite displacement method with a cutoff radius of 5 Å. We likewise explored the thermodynamic properties by utilizing quasi-harmonic Debye model in which bulk modulus, heat capacity, Debye temperature, Grüneisen parameter, and thermal expansion coefficient are resolved at 0–30 Gpa pressure and 0–900 K temperature from the non-equilibrium Gibbs functions.

Keywords

Density functional theory Fe2Cr X(X = Al, Ga) Magnetic properties Elastic properties Phonon properties Thermodynamic properties 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51401099)

References

  1. 1.
    Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed 46, 668–699 (2007)CrossRefGoogle Scholar
  2. 2.
    Cheng, C., Meng, K., Li, S., Zhao, J., Lai, T.: Femtosecond laser excitation of multiple spin waves and composition dependence of Gilbert damping in full-Heusler Co2Fe1−xMnxAl films. Appl. Phys. Lett. 103, 232406 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Loong, L.M., Kwon, J.H., Deorani, P., Yu, C.N.T., Hirohata, A.: Investigation of the temperature dependence fo ferromagnetic resonance and spin waves in Co2FeAl0.5Si0.5. Appl. Phys. Lett. 104, 232409 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Heusler, F., Starck, W., Haupt, E.: ÜBer magnetische manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219 (1903)Google Scholar
  5. 5.
    de Groot, R.A., Mueller, F.M., van Engen, G.P., Buschow, K.H.J.: New class of materials: half metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    Özdogan, K., Sasioglu, E., Aktas, B., Galanakis, I.: Doping and disorder in the Co2MnAl and Co2MnGa half-metallic Heusler alloys. Phys. Rev. B 74, 172412 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Chakrabarti, A., D’Souza, S.W., Barman, S.R.: Electronic structure of Fe2CrSn. Phys. B 407, 3547–3550 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Wei, X.-P., Deng, J.-B., Mao, G.-Y., Chu, S.-B. , Hu, X.-R.: Half metallic properties for the Ti2YZ (Y = Fe, Co, Ni; Z = Al, Ga, In) Heusler alloys: a first-principles study. Intermetallics 29, 86–91 (2012)CrossRefGoogle Scholar
  9. 9.
    Paduani, C., Pottker, W.E., Ardison, J.D., Schaf, J., Takeuchi, A.Y., Yoshida, M.I., Soriano, S., Kalisz, M.: Mössbauer effect and magnetization studies of the Fe2+xCr1−xAl system in the L21 (X 2YZ) structure. J. Phys.: Condens. Matter 19, 156204 (2007)ADSGoogle Scholar
  10. 10.
    Dahmane, F., Mogulkoc, Y., Doumi, B., Tadjer, A., Khenata, R., Omran, S.B., Rai, D.P., Murtaza, G., varshney, D.: Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: a first principle study. J. Magn. Magn. Mater. 407, 167–174 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Umetsu, R.Y., Morimoto, N., Nagasako, M., Kainuma, R., Kanomata, T.: Annealing temperature dependence of crystal structures and magnetic properties of Fe2CrAl and Fe2CrGa Heusler alloys . J. Alloys Compd. 528, 34–39 (2012)CrossRefGoogle Scholar
  12. 12.
    Amari, S., Mebsout, R., Mecabih, S., Abbar, B., Bouhafs, B.: First-principle study of magnetic, elastic and thermal properties of full Heusler Co2MnSi. Intermetallics 44, 26–30 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, L., Zhu, X.: First-principles investigations of electronic, magnetic and thermodynamic properties of Heusler alloys Co2Mn1−xTixSn. J. Alloys Compd. 679, 74–79 (2016)CrossRefGoogle Scholar
  14. 14.
    Ghosh, S., Gupta, D.C.: Electronic, magnetic, elastic and thermodynamic properties of Cu2MnGa. J. Magn. Magn. Mater. 411, 120–127 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Song, T., Ma, Q., Sun, X.-W., Liu, Z.-J., Wei, X.-P., Tian, J.-H.: High-pressure and high-temperature physical properties of half-metallic full-Heusler alloys Mn2RuSi by first-principles and quasi-harmonic Debye model. J. Magn. Magn. Mater. 424, 359–364 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P.: The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, and V) under pressure and temperature: a first principles study. Mater. Des. 114, 398–403 (2017)CrossRefGoogle Scholar
  17. 17.
    Payne, M.C., Teter, M.P., Allen, D.C., Arias, T.A., Jiannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(1992), 13244 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Perdew, J.P., Zunger, A.: Seft-interaction correction to density—functional approximation for many-electron system. Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    Vanerbilt, D.: Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Phys. Rev. B, Rapid Communication 41, 7892 (1990)CrossRefGoogle Scholar
  22. 22.
    Fischer, H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992)CrossRefGoogle Scholar
  23. 23.
    Monkshort, H.J., Pack, J.D.: Special points for Brillouin-zone integration. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Blanco, M.A., Francisco, E., Luana, V.: GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57–72 (2004)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Otero-de-la-Roza, A., Abbasi Perez, D., Luana, V.: GIBBS2: a new version of the quasi-harmonic model code. II. models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Arikan, N., Iyigor, A., Candan, A., Ugur, S., Charifi, Z., Baaziz, H., Ugur, G.: Electonic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study. J. Mater. Sci 49, 4180–4190 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Shreder, E., Streltsov, S.V., Svyazhin, A., Makhnev, A., Marchenkov, V.V., Lukoyanov, A., Weber, H.W.: Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys. J. Phys. Condens. Matter 20, 045212 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, H.G., Zhang, C.Z., Zhu, W., Liu, E.K., Wang, W.H., Zhang, H.W., Cheng, J.L., Luo, H.Z., Wu, G.H.: Significant disorder-induced enhancement of the magnetization of Fe2CrGa by ball milling. J. Appl. Phys. 114, 013903 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Sin’ko, G.V., Smirnov, N.A.: Ab initio calculation of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystal under pressure. J. Phys. Condens. Matter. 14, 6989–7005 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philos Magazine and J. Sci 45, 823–843 (1954)CrossRefGoogle Scholar
  32. 32.
    Niu, X.-L., Wang, L.-J.: Effect of transition-metal substitution on electronic and mechanical properties of Fe3Al: first-principles calculations. Comput. Mater. Sci. 53, 128–132 (2012)CrossRefGoogle Scholar
  33. 33.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic constant and elastic moduli of metals and insulators Handbook. In: Frantsevich, I.N. (ed.) Naukuva Dumka Kiev, pp. 60–180 (1983)Google Scholar
  34. 34.
    Debye, P.: Zur Theorie der spezifischen wärmen. Ann. Phys. 344, 789–839 (1912)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
Corrected publication November/2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations