Advertisement

Fabrication and Analysis of Tri-layer YBa2Cu3 O 7−δ Thick Films by Low-Fluorine MOD Method

  • C. Shi
  • Z. Y. Liu
  • X. M. Liu
  • X. F. Hu
  • M. J. Li
  • W. Du
  • C. Y. Bai
  • Y. M. Lu
  • Y. Q. Guo
  • C. B. Cai
Original Paper

Abstract

Improving the thickness of superconducting layer in coated conductors is an effective way to enhance its critical current. In this work, tri-layer YBCO/YBCO/YDyBCO films were successfully deposited on buffered Hastelloy substrate using the multi-coating lowfluorine metal-organic decomposition (LF-MOD) method and the thickness of the films can be up to 2.4 μ m. The effects of high-temperature annealing time on microstructures and superconducting properties of the films were systematically studied. Energy dispersive X-ray spectroscopy (EDS) results reveal that there remains a large amount of F element in the upper layer of the film when the annealing time is too short. With increasing the annealing time, the fluoride-containing precursor converts to YBCO grains completely. But the coarsening of grains appeared, and the critical current density (J c) of the film dropped slightly when the annealing time is too long. The cross-sectional scanning electron microscope (SEM) image and EDS plane analysis were applied to investigate the microstructure and element distribution of the final triple-layer YBCO films, respectively. The critical current of the final YBCO superconducting film could reach 316 A (77 k, self-field) for 1.2-cm-wide tapes with the optimal annealing conditions.

Keywords

YBCO thick film LF-MOD Multi-coating Annealing time Critical current 

Notes

Acknowledgements

We thank M.J. Sun and M. BOUBECHE for valuable discussions.

Funding Information

This work was supported in part by Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700), the Science and Technology Commission of Shanghai Municipality (16521108400, 16DZ0504300, and 14521102800), and the National Natural Science Foundation of China (51572165, 11174193, and 51202141).

References

  1. 1.
    Foltyn, S.R., Civale, L., Macmanus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., et al.: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A.: High-tc superconducting materials for electric power applications. Nature 414, 368–377 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Holesinger, T.G., Civale, L., Maiorov, B., Feldmann, D.M., Coulter, J.Y., Miller, D., et al.: Progress in nanoengineered microstructures for tunable high-current, high-temperature superconducting wires. Adv. Mater. 20, 391–407 (2008)CrossRefGoogle Scholar
  4. 4.
    Obradors, X., Puig, T., Ricart, S., Coll, M., Gazquez, J., Palau, A., et al.: Growth, nanostructure and vortex pinning in superconducting YBa2Cu3 O 7 thin films based on trifluoroacetate solutions. Supercond. Sci. Technol. 25, 123001 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Araki, T., Hirabayashi, I.: Review of a chemical approach to YBa2 cu 3o7-x-coated, superconductors—metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16, R71–R94 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Solovyov, V.F., Wiesmann, H.J., Suenaga, M.: Critical current densities and the structural quality of 3- and 4- μ m-thick superconducting YBa2Cu3 O 7 layers synthesized using the ex situ process. J. Appl. Phys. 102, 053902 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Obradors, X., Puig, T.: Coated conductors for power applications: materials challenges. Supercond. Sci. Technol. 27, 044003 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Kim, S.I., Gurevich, A., Song, X., Li, X., Zhang, W., Kodenkandath, T., et al.: Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal-organic-deposition-route YBa2Cu3 O 7−x coated conductors. Supercond. Sci. Technol. 19, 968–979, 1364–1365 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Ghalsasi, S.V., Zhou, Y.X., Chen, J., Rusakova, I.: Fabrication, characterization and study of MOD multi-layer YBCO films. IEEE Trans. Appl. Supercond. 19, 3379–3382 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Nakaoka, K., Yoshizumi, M., Usui, Y., Izumi, T., Shiohara, Y.: Improvement of production rate of YBCO coated conductors fabricated by TFA-MOD method. Phys. Procedia 58, 134–137 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Long, N., Strickland, N., Chapman, B., Ross, N., Xia, J., Li, X., et al.: Enhanced in-field critical currents of YBCO second-generation (2G) wire by Dy additions. Supercond. Sci. Technol. 18, S405–S408 (2005)CrossRefGoogle Scholar
  12. 12.
    Izumi, T., Yoshizumi, M., Matsuda, J., Nakaoka, K., Kitoh, Y., Sutoh, Y., et al.: Progress in development of advanced TFA-MOD process for coated conductors. Physica C Superconductivity 463, 510–514 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Takagi, Y., Nakaoka, K., Nakamura, T., Yoshizumi, M., Kiss, T., Izumi, T., et al.: Effect of interim annealing on mechanical strength of TFA-MOD derived YBCO coated conductors. Phys. Procedia 58, 138–141 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • C. Shi
    • 1
  • Z. Y. Liu
    • 1
    • 2
  • X. M. Liu
    • 1
  • X. F. Hu
    • 1
  • M. J. Li
    • 1
  • W. Du
    • 1
  • C. Y. Bai
    • 1
    • 2
  • Y. M. Lu
    • 1
    • 2
  • Y. Q. Guo
    • 1
    • 2
  • C. B. Cai
    • 1
    • 2
  1. 1.Shanghai Key Laboratory of High Temperature Superconductors, Physics DepartmentShanghai UniversityShanghaiChina
  2. 2.Shanghai Creative Superconductor Technologies Co. Ltd.ShanghaiChina

Personalised recommendations