Electronic and Magnetic Investigations of Rare-Earth Tm-doped AlGaN Ternary Alloy

Original Paper
  • 49 Downloads

Abstract

Electronic structure and magnetic interaction of substitutional thulium rare earth-doped wurtzite Al0.5Ga0.5N ternary alloy have been performed using density-functional theory within local spin-density approximation with Hubbard-U corrections (LSDA+U) approach. The LSDA+U method is applied to the rare earth (RE) 4f states. The calculation of formation energy shows that it is more energetically favorable for a substitutional Tm atom to replace the Al atom than the Ga atom. For AlGaN:Tm, the lattices parameters are expanded due to larger ionic radius of Tm than that of Al atoms. The energy band gap of AlGaN:Tm has direct character and its width becomes small compared with that of AlGaN. The magnetic coupling between Tm ions in the nearest neighbor sites is ferromagnetic. Magnetic interaction of rare earth ion with the host states at the valence and conduction band edges has been investigated and compared to those of GaN:Mn and has been found to be relatively small.

Keywords

Rare-earth AlGaN Ferromagnetism LSDA+U 

References

  1. 1.
    Monemar, B.: Phys. Rev. B 10, 676 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Perry, P.B., Rutz, R.F.: Appl. Phys. Lett. 33, 319 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    Teraguchi, N., Suzuki, A., Nanishi, Y., Zhou, Y.-K., Hashimoto, M., Asahi, H.: Sol. State Commun. 122, 651 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V.F., Ploog, K.H.: Phys. Rev. Lett. 94, 037205 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Asahi, H., Zhou, Y.K., Hashimoto, M., Kim, M.S., Li, X.J., Emura, S., Hasegawa, S.: J. Phys. Condens. Matter 16, S5555 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Dhar, S., Kammermeier, T., Ney, A., Perez, L., Ploog, K.H., Melnikov, A., Wieck, A.D.: Appl. Phys. Lett. 89, 062503 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Hite, J.K., Thaler, G.T., Khanna, R., Abernathy, C.R., Pearton, S.J., Park, J.H., Steckl, A.J., Zavada, J. M.: Appl. Phys. Lett. 89, 132119 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Tao, D., Liu, C., Yin, C., Li, J.: Mater. Lett. 114, 22 (2014)CrossRefGoogle Scholar
  9. 9.
    Han, S.Y., Hite, J., Thaler, G.T., Frazier, R.M., Abernathy, C.R., Pearton, S.J., Choi, H.K., Lee, W.O., Park, Y.D., Zavada, J.M., Gwilliam, R.: Appl. Phys. Lett. 88, 042102 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Nepal, N., Bedair, S.M., El-Masry, N.A., Lee, D.S., Steckl, A.J., Zavada, J.M.: Appl. Phys. Lett. 91, 222503 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Filhol, J.-S., Jones, R., Shaw, M.J., Briddon, P.R.: Appl. Phys. Lett. 84, 2841 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Svane, A., Christensen, N.E., Petit, L., Szotek, Z., Temmerman, W.M.: Phys. Rev. B 74, 165204 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Lazreg, A., Dridi, Z., Benkaboub, F., Bouhafs, B.: Physica B 403, 2702 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Dridi, Z., Lazreg, A., Rozale, H., Bouhafs, B.: Comput. Mater. Sci. 48, 743 (2010)CrossRefGoogle Scholar
  15. 15.
    Caroena, G., Machado, W.V.M., Justo, J.F., Assali, L.V.C.: Appl. Phys. Lett. 102, 062101 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Dridi, Z., Lazreg, A., Bouhafs, B.: J. Magn. Magn. Mater. 323, 1174 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Schulthess, T.C., Temmerman, W.M., Szotek, Z., Bulter, W.H., Malcolm Stocks, G.: Nat. Mater. 4, 838 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Mishraa, J.K., Dhar, S.: Solid State Commun. 226, 25 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Mitra, C., Lambrecht, W.R.L.: Phys. Rev. B 80, 081202(R) (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Schwingenschlögl, U., Roqan, I.S.: J. Appl. Phys. 116, 183905 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Thiess, A., Blügel, S., Dederichs, P.H., Zeller, R., Lambrecht, W.R.L.: Phys. Rev. B 92, 104418 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Tang, Z., Zhang, D.Y., Tang, L.M., Wang, L.L., Chen, K.Q.: Eur. Phys. J. B 86, 284 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Zhen-Tao, H., Yan-Ru, L., He-Yan, L., Xue-Fang, D., Guo-Dong, L., Cai-Chi, L., Ying, L.: Acta Phys. Sin. 65, 127102 (2016)Google Scholar
  24. 24.
    Steckl, A.J., Zavada, J.M.: MRS Bull. 24, 33 (1999)CrossRefGoogle Scholar
  25. 25.
    Lozykowski, H.J., Jadwisienczak, W.M., Brown, I.: Appl. Phys. Lett. 74, 1129 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., Birkhahn, R.: Appl. Phys. Lett. 75, 2184 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Lorenz, K., Wahl, U., Alves, E., Dalmasso, S., Martin, R.W., O’Donnell, K.P., Ruffenach, S., Briot, O.: Appl. Phys. Lett. 85, 2712 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Zavada, J.M., Nepal, N., Lin, J.Y., Jiang, H.X., Brown, E., Hömmerich, U., Hite, J., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Gwilliam, R.: Appl. Phys. Lett. 89, 152107 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Steckl, A.J., Park, J.H., Zavada, J.M.: Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  30. 30.
    Nepal, N., Bedair, S.M., El-Masry, N.A., Lee, D.S., Steckl, A.J., Zavada, J.M.: Appl. Phys. Lett. 91, 222503 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Phys. Rev. B 24, 864 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    Jansen, H.J.F., Freeman, A.J.: Phys. Rev. B 30, 561 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Technische Universität Wien, Austria (2001)Google Scholar
  36. 36.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Larson, P., Lambrecht, R.L.: Phys. Rev. B 75, 045114 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Dridi, Z., Bouhafs, B., Ruterana, P.: Semicond. Sci. Technol. 18, 850 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Van de Walle, C.G.: Phys. Rev. Lett. 85, 1015 (2000)Google Scholar
  40. 40.
    Van Schilfgaarde, M., Sher, A., Chen, A.-B.: J. Cryst. Growth 178, 8 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    Fritsch, J., Sankey, O.F., Schmidt, K.E., Page, J.B.: J. Phys. Condens. Matter 11, 2351 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Lee, S.R., Wright, A.F., Crawford, M.H., Petersen, G.A., Han, J., Biefeld, R. M.: Appl. Phys. Lett. 74, 3344 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Dalpian, G.M., Wei, S.-H.: Phys. Rev. B 72, 115201 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Larson, B.E., Hass, K.C., Ehrenreich, H., Carlsson, A.E.: Phys. Rev. B 37, 4137 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • S. Belhachi
    • 1
  • A. Lazreg
    • 1
  • Z. Dridi
    • 1
  • Y. Al-Douri
    • 2
    • 3
  1. 1.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentUniversity of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  2. 2.Nanotechnology and Catalysis Research Center (NANOCAT)University of MalayaKuala LumpurMalaysia
  3. 3.Physics Department, Faculty of ScienceUniversity of Sidi-Bel-AbbesSidi Bel-AbbesAlgeria

Personalised recommendations