Advertisement

Effects of Iron Contents on the Vortex State in Fe x Se0.5Te0.5

  • R. M. Hamad
  • T. S. Kayed
  • S. Kunwar
  • K. A. Elsayed
  • E. Abu-Ruz
  • Kh. A. Ziq
Original Paper
  • 114 Downloads

Abstract

We investigate the effects of iron content on the upper critical field (H c2) and the activation energy U(T) in thermally activated flux flow in Fe x Se0.5Te0.5 near the superconducting transition temperature T c . The variations in H c2(T) with temperature are analyzed using Ginzburg-Landau (GL), Werthamer-Helfand-Hohenberg (WHH) models along with the empirical relation (ER). The obtained values of H c2(0) depend strongly on the model and the criteria used to determine the transition temperature. However, the general trend is that that H c2(0) increases with the increasing Fe content. The activation energy U(T) is maximum for x =  1 and rapidly suppressed by excess or deficiency of iron. The low values of U(T) (∼10 meV) reflect the low vortex-pinning nature (due to defects, vacancies, etc.) in the Fe x Se0.5Te0.5 superconductor.

Keywords

Fe-based superconductors Activation energy Werthamer-Helfand-Hohenberg (WHH) models 

Notes

Acknowledgments

We would like to acknowledge the support of King Fahd University of Petroleum & Minerals for this work. We also would like to acknowledge the support of the Imam Abdulrahman Bin Faisal University to this work.

Funding Information

This project has been funded by NSTIP under project number 11-ADV1631-04.

References

  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296–3297 (2008)CrossRefGoogle Scholar
  2. 2.
    Böhmer, A.E., Arai, T., Hardy, F., Hattori, T., Iye, T., Wolf, T., Löhneysen, H.v., Ishida, K., Meingast, C.: Phys. Rev Let. 114, 027001 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Watson, M.D., Kim, T.K., Haghighirad, A.A., Davies, N.R., McCollam, A., Narayanan, A., Blake, S.F., Chen, Y.L., Ghannadzadeh, S., Schofield, A.J., Hoesch, M., Meingast, C., Wolf, T., Coldea, A.I.: Phys. Rev. 91, 155106 (2015)CrossRefGoogle Scholar
  4. 4.
    Yeh, K.-W., Huang, T.-W., Huang, Y.-L., Chen, T.-K., Hsu, F.-C., Wu, P.M., Lee, Y.-C., Chu, Y.-Y., Chen, C.-L., Luo, J.-Y., Yan, D.-C., Wu, M.-K.: EPL 84, 37002 (2008).  https://doi.org/10.1209/0295-5075/84/37002 ADSCrossRefGoogle Scholar
  5. 5.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Appl. Phys. Lett. 93, 152505 (2008).  https://doi.org/10.1063/1.3000616  10.1063/1.3000616 ADSCrossRefGoogle Scholar
  6. 6.
    Ge, J.-F., Liu, Z.-L., Liu, C., Gao1, C.-L., Qian, D., Xue, Q.-K., Liu, Y., Jia, J.-F.: Nat. Mater. 14, 285 (2015)Google Scholar
  7. 7.
    Sudesh, S., Das, S., Rawat, R., Bernhard, C., Varma, G.D.: Rani J. Appl. Phys 111, 07E119 (2012)CrossRefGoogle Scholar
  8. 8.
    Sala, A., Palenzona, A., Bernini, C., Caglieris, F., Cimberle, M.R., Ferdeghini, C., Lamura, G., Martinelli, A., Pani, M., Putti, M.: Phys. C 494, 69 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Bendele, M., Babkevich, P., Katrych, S., Gvasaliya, S.N., Pomjakushina, E., Conder, K., Roessli, B., Boothroyd, A.T., Khasanov, R., Keller, H.: Phys. Rev. B 82, 212504 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    McQueen, T.M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., Hor, Y.S., Allred, J., Williams, A.J., Qu, D., Checkelsky, J., Ong, N.P., Cava, R.J.: Phys. Rev. B 79, 014522 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Bendele, M., Babkevich, P., Katrych, S., Gvasaliya, S.N., Pomjakushina, E., Conder, K., Roessli, B., Boothroyd, A.T., Khasanov, R., Keller, H.: Phys. Rev. B 82, 212504 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, T.-K., Chang, C.-C., Chang, H.-H., Fang, A.-H., Wang, C.-H., Chao, W.-H., Tseng, C.-M., Lee, Y.-C., Wu, Y.-R., Wen, M.-H., Tang, H.-Y., Chen, F.-R., Wang, M.-J., Wu, M.-K., Dyck, D.V.: Proc. Natl. Acad. Sci. U. S. A. 111, 63 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Taen, T., Tsuchiya, Y., Nakajima, Y., Tamegai, T.: Phys. Rev. B 80, 092502 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Noji, T., Suzuki, T., Abe, H., Adachi, T., Kato, M., Koike, Y.: J. Phys. Soc. Jpn. 79, 084711 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Noji, T., Imaizumi, M., Suzuki, T., Adachi, T., Kato, M., Koike, Y.: J. Phys. Soc. Jpn. 81, 054708 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Koz, C., Roßler, S., Wirth, S., Schwarz, U.: arXiv:1703.05180v (2017)
  17. 17.
    Tinkham, M.: Introduction to superconductivity, 2nd. McGraw-Hill, NY (1996)Google Scholar
  18. 18.
    Ginzburg, V.L., Landau, L.D.: Zh. Eksp. Teor. Fiz. 20, 1064 (1957)Google Scholar
  19. 19.
    Abrikossov, A.A.: Sov. Phys-JETP 5, 1174 (1957)Google Scholar
  20. 20.
    Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    Sultana, R., Rani, P., Hafiz, A.K., Goyal, R., Awana, V.P.S.: J. Supercond. Nov. Magn. 29, 1399 (2016)CrossRefGoogle Scholar
  22. 22.
    Ge, J., Cao, S., Shen, S., Yuan, S., Kang, B., Zhang, J.: Solid State Commun. 150, 1641 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of ScienceKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Basic Sciences and Humanities, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations