Skip to main content
Log in

Structural, Magnetic, and Optoelectronic Properties of CuMnSe2-Chalcopyrite: DFT + U and Hybrid Functional Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The work presented in this manuscript is a study of structural, magnetic, and optoelectronic properties of CuMnSe2-chalcopyrite by FP-(L)APW + lo method using semilocal and hybrid functional. Structural properties such as cell parameters, bulk modulus, and its pressure derivative, as well as the cohesive energy and total energy of the unit cell were determined for the three magnetic phases (AFM, FM, and NM) from which it has been found that CuMnSe2-chalcopyrite is ferromagnetic. The studied elastic properties confirm the mechanical stability of CuMnSe2 in its chalcopyrite structure. Electronic properties, such as the band gap energy, density of states, and charge density, and magnetic properties, such as Hubbard term estimation, magnetic moment, and polarization of the CuMnSe2, have been predicted by several methods (GGA-PBEsol + U eff, GGA-PBEsol_(mBJ) + U eff, and hybrid functional). Optical properties such as the analysis of the dielectric function and the prediction of the refractive index and birefringence variations were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huang, H.M., Luo, S.J., Yao, K.L.: J. Supercond. Nov. Magn. 27, 257–261 (2014)

    Article  Google Scholar 

  2. Asubar, J.T., et al.: J. Cryst. Growth 311, 929–932 (2009)

    Article  ADS  Google Scholar 

  3. Tao, H., Dongwei, L.: Biotechnol. Rep. 4, 107–119 (2014)

    Article  Google Scholar 

  4. Kumar, V., et al.: Comput. Mater. Sci. 87, 227–231 (2014)

    Article  Google Scholar 

  5. Abou-Ras, D., et al.: Thin Solid Films (2017), https://doi.org/10.1016/j.tsf.2017.01.005

  6. Kamatani, T., Akai, H.: J. Supercond. Incorpor. Novel Magn. 16, 1 (2003)

    Google Scholar 

  7. Lyubutin, I.S., et al.: Acta Mater. 61, 3956–3962 (2013)

    Article  Google Scholar 

  8. Kocak, B., Ciftci, Y.O.: J. Alloys Compd. 705, 211–217 (2017)

    Article  Google Scholar 

  9. Xiao, J., et al.: Comput. Mater. Sci. 117, 472–477 (2016)

    Article  Google Scholar 

  10. Krc, J., et al.: Thin Solid Films (2016) https://doi.org/10.1016/j.tsf.2016.08.056

  11. Tablero, C.: Chem. Phys. Lett. 499, 75–78 (2010)

    Article  ADS  Google Scholar 

  12. Sibghat-ullah, et al.: Mater. Sci. Semicond. Process. 26, 79–86 (2014)

    Article  Google Scholar 

  13. Hasanli, S.M., et al.: Semiconductors 48, 417–422 (2014)

    Article  ADS  Google Scholar 

  14. Zhao, Y.-J., Freeman, A.J.: J. Magn. Magn. Mater. 246, 145–150 (2002)

    Article  ADS  Google Scholar 

  15. Delgado, G.E., Villegas, J.L., Silva, P., Sagredoc, V.: Chalcogenide Lett. 6, 293–298 (2009)

    Google Scholar 

  16. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Phys. Rev. B 64, 195134 (2001)

    Article  ADS  Google Scholar 

  17. Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)

    Article  ADS  Google Scholar 

  18. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001. ISBN 3-9501031-1-2

  19. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)

    Article  Google Scholar 

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  22. Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401(1)–226401(4) (2009)

    ADS  Google Scholar 

  23. Koller, D., Blaha, P., Tran, F.: J. Phys.: Condens. Matter 25, 435503 (2013)

    ADS  Google Scholar 

  24. Tran, F., Blaha, P., Betzinger, M., Blügel, S.: Phys. Rev. B 91, 165121 (2015)

    Article  ADS  Google Scholar 

  25. Khan, W., Betzler, S., Sipr, O., Ciston, J., Blaha, P., Scheu, C., Minar, J.: J. Phys. Chem. C 120(41), 23329–23338 (2016)

    Article  Google Scholar 

  26. Blochl, P., Jepsen, O., Andersen, O.K.: Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  27. Csonka, G.I., Perdew, J.P., et al.: Phys. Rev. B 79, 155107 (2009)

    Article  ADS  Google Scholar 

  28. Sahli, B., et al.: J. Alloys Compd. 635, 163–172 (2015)

    Article  Google Scholar 

  29. Murnaghan, F.D.: Prot. Natl. Acad. Sci. USA. 30, 244 (1944)

    Article  ADS  Google Scholar 

  30. Yakoubi, A., et al.: Results Phys. 2, 58–65 (2012)

    Article  ADS  Google Scholar 

  31. Wei, S.-H., Zunger, A.: Phys. Rev. B 35, 2340 (1987)

    Article  ADS  Google Scholar 

  32. Kerroum, D., et al.: Optik 139, 315–327 (2017)

    Article  ADS  Google Scholar 

  33. Wallace, D.C.: Thermodynamics of Crystals. Willey, New York (1972)

    Google Scholar 

  34. Manjon, F.J., Tiginyanu, I., Ursaki, V. (eds.): Pressure-induced phase transitions in AB2X4 chalcogenide compounds. Springer Series in Materials Science, Berlin (189)

  35. Singh, P., Sharma, S., Kumari, S., et al.: Semiconductors 51, 679 (2017)

    Article  ADS  Google Scholar 

  36. Reshak, A.H., Jamal, M.: Int. J. Electrochem. Sci. 8 (2013)

  37. IRelast package provided by Jamal M. as a part of the commercial Code Wien2k, http://www.wien2k.at/ (2016)

  38. Wróbel, J., et al.: J. Alloys Compd. 512, 296–310 (2012)

    Article  Google Scholar 

  39. Bouafia, H., et al.: Comput. Mater. Sci. 75, 1–8 (2013)

    Article  Google Scholar 

  40. Voigt, W.: Lehrbuch der Kristallphysik. Teubner, Leipzig (1928)

    MATH  Google Scholar 

  41. Shein, I.R., Ivanovskii, A.L.: Scr. Mater. 59, 1099 (2008)

    Article  Google Scholar 

  42. Reuss, A., Angew, Z.: Math. Mech. 8, 55 (1929)

    Google Scholar 

  43. Hill, R.: Proc. Phys. Soc. London A 65, 349 (1952)

    Article  ADS  Google Scholar 

  44. Sharma, S., et al.: Comput. Mater. Sci. 86, 108–117 (2014)

    Article  Google Scholar 

  45. Rahman, M.A., et al.: Comput. Cond. Matter 9, 19–26 (2016)

    Article  Google Scholar 

  46. Pugh, S.F.: Philo. Mag. 45, 823 (1954)

    Article  Google Scholar 

  47. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  48. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  49. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: J. Phys.: Condens. Matter 9, 767 (1997)

    ADS  Google Scholar 

  50. Tran, F., Blaha, P., Schwarz, K.: Phys. Rev. B 74, 155108 (2006)

    Article  ADS  Google Scholar 

  51. Amine, M.E., Monir, et al.: J. Magn. Magn. Mater. 374, 50–60 (2015)

    Article  ADS  Google Scholar 

  52. Madsen, G.K.H., Novák, P.: Europhys. Lett. 69, 777 (2005)

    Article  ADS  Google Scholar 

  53. Anisimov, V.I., Gunnarsson, O.: Phys. Rev. B 43, 7570 (1991)

    Article  ADS  Google Scholar 

  54. Spiel, C., Blaha, P., Schwarz, K.: Phys. Rev. B 79, 115123 (2009)

    Article  ADS  Google Scholar 

  55. Dufek, P., Blaha, P., Schwarz, K.: Phys. Rev. B 50, 7279 (1994)

    Article  ADS  Google Scholar 

  56. Engel, E., Vosko, S.H.: Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  57. Fahy, S., Chang, K.J., Louis, S.G., Cohen, M.L.: Phys. Rev. B 35, 7840 (1989)

    Google Scholar 

  58. Picozzi, S., et al.: Phys. Rev. B 66, 205206 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  59. Thangavel, R., et al.: Physica B 403, 2768–2772 (2008)

    Article  ADS  Google Scholar 

  60. Hamri, B., et al.: Comput. Cond. Matter 3, 14–20 (2015)

    Article  Google Scholar 

  61. Coey, J.M., Chien, C.: MRS Bull. 28, 720 (2003)

    Article  Google Scholar 

  62. Pickett, WE., Eschrig, H.: J. Phys.: Condens. Matter 19, 315203 (2007)

    ADS  Google Scholar 

  63. Pauling, L.: The nature of chemical bond. Cornell University Press, Ithaca (1960)

    MATH  Google Scholar 

  64. Smith, N.V.: Phys. Rev. B 3, 1862 (1971)

    Article  ADS  Google Scholar 

  65. Ehrenreich, H., Philips, H.R.: Phys. Rev. 128, 1622 (1962)

    Article  ADS  Google Scholar 

  66. Wooten, F.: Optical Properties of Solids. Academic, New York (1972)

    Google Scholar 

  67. Reshak, A.H., Auluck, S., Kityk, I.V.: J. Solid State Chem. 181, 789 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author H. Bouafia kindly acknowledges Mr. Kamel Hassaine for his help and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Djebour or H. Bouafia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djebour, B., Bouafia, H., Sahli, B. et al. Structural, Magnetic, and Optoelectronic Properties of CuMnSe2-Chalcopyrite: DFT + U and Hybrid Functional Investigation. J Supercond Nov Magn 31, 1881–1893 (2018). https://doi.org/10.1007/s10948-017-4386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4386-9

Keywords

Navigation