Grain Boundary Shortening in CuTl-1234 Superconductor by the Addition of ZnO Nanoparticles

  • M. Usman Muzaffar
  • Syed Hamza Safeer
  • Nawazish A. Khan
  • A. A. Khurram
  • T. Subhani
  • Rabia Nazir
Original Paper


The superconducting properties of Cu0.5Tl0.5 Ba2Ca3Cu4O12−x are studied after the inclusion of ZnO nanoparticles. The ZnO nanoparticles prepared by a sol-gel method were incorporated during the second stage of the synthesis of Cu0.5Tl0.5Ba2Ca3Cu4O12−x phase in y = 0, 3.0, 5.0, and 7.0 wt%. It is observed that the structure, the morphology, and the superconductivity properties are greatly influenced by the inclusion of ZnO nanoparticles. The lattice parameters of the orthorhombic phase of Cu0.5Tl0.5Ba2Ca3Cu4O12−x superconductor are decreased with the increase of x. Similarly, the grain morphology has been changed from needle-like to spherical grains. One of the major benefits of the inclusion of ZnO nanoparticles is the increase in critical temperature, critical magnetic fields, and critical current density as observed from the theoretical calculations of fluctuation-induced conductivity analysis.


Superconductor ZnO nanoparticles Grain boundaries Fluctuation Conductivity 


  1. 1.
    Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections. Intl. J. Solids Struct. 44, 941 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Li, G., Yang, J., Ye, X., Fu, L., Luo, Y., Zhang, D., Liu, M., Li, W., Zhang, M.: Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65. J. Am. Cermaic Soc. 98, 3817 (2015)Google Scholar
  3. 3.
    Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)CrossRefGoogle Scholar
  4. 4.
    Abd-Shukora, R., Kong, W.: Magnetic field dependent critical current density of Bi–Sr–Ca–Cu–O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles. J. Appl. Phys. 105, 07E311 (2009)CrossRefGoogle Scholar
  5. 5.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: Enhancing of magnetic flux pinning in YBa2Cu3O7/CuO granular composites. J. Appl. Phys. 118, 023907 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Feldmann, D.M., Holesinger, T.G., Maiorov, B., Zhou, H., Foltyn, S.R., Coulter, J.Y., Apodoca, I.: 1000 A cm− 1 in a 2 μ m thick YBa2Cu3O7−x film with BaZrO3 and Y2O3 additions. Supercond. Sci. Technol. 23, 115016 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Miura, M., Yoshida, Y., Ichino, Y., Takai, Y., Matsumoto, K., Ichinose, A., Horii, S., Mukaida, M.: Enhancement of flux-pinning in epitaxial Sm1−xBa2−xCu3Oy films by introduction of low-Tc nanoparticles Japanese. J. Appl. Phys. 45, L11–L13 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Goswami, R., Holtz, R.L., Rupich, M.W., Zhang, W., Spanos, G.: Effect of Holmium additions on microstructures in YBa2Cu3O7−x. Acta Mater. 55, 6746–6753 (2007)CrossRefGoogle Scholar
  9. 9.
    Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Mishra, N.C., Behera, D., Mohanty, T., Mohanta, D., Kanjilal, D., Mehta, G.K., Pinto, R.: Granularity controlled irradiation response of cuprate superconductors. Nucl. Inst. Methods Phys. Res. B 156, 30–34 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Gazda, M., Kusz, B., Gackowska, J., Sadowski, W.: Conductivity and superconductivity in granular materials. Acta Phys. Polon. A 114, 143 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K., Pasternak, M.P.: Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53, 11425 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Xiao, G., Bakhshai, A., Cieplak, M.Z., Tesanovic, Z., Chien, C.L.: Correlation between superconductivity and normal-state properties in the La1.85Sr0.15(Cu1−xZnx)O4 system. Phys. Rev. Correl. Between B 39, 315 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    Ghosh, A.K., Basu, A.N.: Fluctuation-induced conductivity in quenched and furnace-cooled Bi2Sr2CaCu2O8 + δ: Aslamazov-Larkin or short-wavelength fluctuations. Phys. Rev. B 59, 11193 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Sato, T., Nakane, H., Mori, N., Yoshizawa, S.: Physica C 344, 244 (2003)Google Scholar
  16. 16.
    Ghosh, A.K., Bandyopadhyay, S.K., Barat, P., Sen, P., Basu, A.N.: Fluctuation-induced conductivity of polycrystalline Y1−xCaxBa2Cu3O7−δ superconductors. Physica C 264, 255 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Kaur, M., Srinibasan, R., Mehta, G.K., Kanjilal, D., Pinto, R., Ogale, S.B., Mohan, S., Ganesan, V.: Effect of disorder on the exponent in the coherence region in high temperature superconductors. Physica C 443, 61 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Lawrence, W.E., Doniach, S.: Proceedings of the twelfth international conference on low temperature physics. In: Kanda, E. (Ed.), p. 361, Keigaku (1971)Google Scholar
  19. 19.
    Passos, C.A.C., Orlando, M.T.D., Passamai, J.L. Jr., de Mello, E.V.L., Correa, H.P.S., Martinez, L.G.: Resistivity study of the pseudogap phase for (Hg,Re)-1223 superconductors. Phys. Rev. B 74, 094514 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Ghorbani, S.R., Rahmati Tarki, M.: Fluctuation conductivity of RE1 − 2xCax M xBa2Cu3O7−δ(RE = Nd, Y and M = Pr, Th) superconductors. J. Supercond. Nov. Magn. 27, 749 (2014)CrossRefGoogle Scholar
  21. 21.
    Mumtaz, M., Zubair, M., Khan, N.A., Nadeem, K.: Infrared absorption spectroscopy and fluctuations induced conductivity (FIC) analysis of Be-doped TlBa2Ca2Cu3O10−δ superconductor. Ceram. Int. 40, 6655 (2014)CrossRefGoogle Scholar
  22. 22.
    Jabbar, A., Qasim, I., Mumtaz, M., Zubair, M., Nadeem, K., Khurram, A.A.: Activation energy and excess conductivity analysis of (Ag)(x)/CuTl-1223 nano-superconductor composites. J. Appl Activation Phys. 115, 203904 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Abu Aly, A.I., Ibrahim, I.H., Awad, R.A., El-Harizy, A.: Stabilization of Tl-1223 phase by arsenic substitution. J. Supercond. Nov. Magn. 23, 1325 (2010)CrossRefGoogle Scholar
  24. 24.
    Rojas Sarmiento, M.P., Uribe Laverde, M.A., Vera Lopez, E., Landinez Tellez, D.A., Roa-Rojas, J.: Conductivity fluctuation and superconducting parameters of the YBa2Cu3−x (PO4)x O7−δ material. Physica B 398, 360 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Usman Muzaffar
    • 1
  • Syed Hamza Safeer
    • 1
  • Nawazish A. Khan
    • 1
  • A. A. Khurram
    • 2
  • T. Subhani
    • 3
  • Rabia Nazir
    • 4
  1. 1.Materials Science Laboratory, Department of PhysicsQuaid-i-Azam UniversityIslamabadIslamic Republic of Pakistan
  2. 2.Laboratory for Advance Materials ProcessingNational Center for PhysicsIslamabadIslamic Republic of Pakistan
  3. 3.Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadIslamic Republic of Pakistan
  4. 4.PCSIR LaboratoriesApplied Chemistry Research CenterLahoreIslamic Republic of Pakistan

Personalised recommendations