Advertisement

Effect of Barium on Morphological Transition and Magnetic and Dielectric Properties in Ferrite Nanoparticles

  • R. Dilip
  • R. Jayaprakash
Original Paper
  • 112 Downloads

Abstract

Barium ferrite (BaFe2O4) nanoparticles were synthesized by auto combustion method under different weight percentages of barium. The role of barium in the behavior of spinel ferrite property is identified from this study. XRD exhibits prominent orientation of (212) for BaFe2O4 has confirmed especially in 20 and 30 wt% of barium. The addition of barium metal induced the specific vibration in FTIR spectra and such changes coincide well with the particle size. Further, the EDX spectrum reflects the atomic percentage of elemental presence in the samples of barium ferrite. Addition of barium on ferrite nanoparticles reduces the intensity of fluorescence. The morphological changes occurred due to increasing doping concentration of barium and is visualized from the FESEM and TEM images. The formation of different morphologies such as spherical, hexagonal platelets and small rectangular bar shape are observed only due to inclusion of barium at surfactant medium. The magnetic properties of the barium ferrite samples are studied by VSM. It reveals that 35.11 emu/g saturation magnetization (M s ) with 3775.08 Oe coercivity. The change in values of coercivity (H c ) from 3775.08 to 1572.95 Oe due to the variation of barium levels confirmed that the role of barium induced the hard magnetic behavior. The dielectric study also indicates the significance of barium ferrite in the variation of dielectric constant.

Keywords

Barium ferrite XRD VSM Dielectric constant 

Notes

Acknowledgements

R. Dilip acknowledges Dr. R. Chandrasekhar, Professor of Chemistry, UGC Networking Centre and CIL, School of Chemistry, University of Hyderabad, for the use of facilities at the School of Chemistry, University of Hyderabad, Telangana.

References

  1. 1.
    Wang, S.F., Li, Q., Zu, X.T., Xiang, X., Liu, W., Li, S.: J. Magn. Magn. Mater. 419, 464–475 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Manikandan, A., John Kennedy, L., Bououdina, M., Judith Vijaya, J.: J. Magn. Magn. Mater. 349, 249–258 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Asl, M.J.P., Ghafesemi, A., Gordani, G.R.: Adv. Mater. Res. 829, 737–741 (2014)Google Scholar
  4. 4.
    Kannapiran, N., Muthusamy, A., Chitra, P., Anand, S., Jayaprakash, R.: J. Magn. Magn. Mater. 423, 208–216 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Teja, A.S., Koh, P.Y.: Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRefGoogle Scholar
  6. 6.
    Yu, S.H., Yoshimura, M.: Chem. Mater. 12, 3805–3810 (2000)CrossRefGoogle Scholar
  7. 7.
    Sigala, C., Guyomard, D., Vebaere, A., Piffard, Y., Tournoux, M.: Solid State Ion. 81, 167 (1995)CrossRefGoogle Scholar
  8. 8.
    Ranjith Kumar, E., Kamzin, A.S., Janani, K.: J. Magn. Magn. Mater. 417, 122–129 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Candeia, R.A., Souza, M.A.F., Bernardi, M.I.B., Maestrelli, S.C., Santos, I.M.G., Souza, A.G., Longo, E.: Ceram. Int. 33, 521–525 (2007)CrossRefGoogle Scholar
  10. 10.
    Dalt, S.D., Sousa, B.B., Alves, A.K., Bergmann, C.P.: Mater. Res. 14, 505–507 (2011)CrossRefGoogle Scholar
  11. 11.
    Ranjith Kumar, E., Arunkumar, T., Prakash, T.: Superlattices Microstruct. 85, 530–535 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, S.F., Zu, X.T., Sun, G.Z., Li, D.M., He, C.D., Xiang, X., Liu, W., Han, S.B., Li, S.: Ceram. Int. 42, 19133–19140 (2016)CrossRefGoogle Scholar
  13. 13.
    Saravani, H., Esmaeilzaei, M.R., Ghahfarokhi, M.T.: J. Inorg. Organomet. Polym. 26, 353–358 (2016)CrossRefGoogle Scholar
  14. 14.
    Vijayaraghavan, T., Suriyaraj, S.P., Selvakumar, R., Venkateswaran, R., Ashok, A.: Mater. Sci. Eng., B 210, 43–50 (2016)CrossRefGoogle Scholar
  15. 15.
    Ranjith kumar, E., Jayaprakash, R., Prakash, T.: J. Magn. Magn. Mater. 358–359, 123–127 (2014)CrossRefGoogle Scholar
  16. 16.
    Singh, A.K., Goel, T.C., Mendiratta, R.G., Thakaur, O.P., Prakash, C.: J. Appl. Phys. 91, 6626–6629 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Thakur, A., Mathur, P., Singh, M.: J. Phys. Chem. Solids 68, 378–381 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Kulkarni, S.R., Kanamadi, C.M., Chougule, B.K.: Mater. Res. Bull. 40, 2064–2072 (2005)CrossRefGoogle Scholar
  19. 19.
    Abdeen, A.M.: J. Magn. Magn. Mater. 192, 121 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Kannaapiran, N., Muthusamy, A., Chitra, P., Anand, S., Jayaprakash, R.: J. Magn. Magn. Mater. 423, 208–216 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Ranji kumar, E., Jayaprakash, R., Arunkumar, T., Sanjay, K.: J. Phys. Chem. Solids 74, 110–114 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Nanotechnology Research Laboratory, Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia

Personalised recommendations