Crystal Structure of (Lu1−x Ca x )Ba2Cu3O7−z (x = 0, 0.2) Superconducting Compounds Studied by Neutron Powder Diffraction

Original Paper
  • 33 Downloads

Abstract

The crystalline structures of two polycrystalline samples of (Lu1−x Ca x )Ba2Cu3O7−z with x = 0 (pure sample) and x = 0.2 (Ca-doped sample) have been analyzed by using neutron powder diffraction techniques to address the structural mechanisms associated with changes in superconducting behavior induced by Ca doping. The pure and Ca-doped samples exhibit superconductivity around 87 and 32 K, respectively. The room-temperature thermoelectric power measurements indicate that both the x = 0 and 0.2 samples are in overdoped state. The Rietveld refinements of the neutron diffraction data collected at room temperature for the pure and Ca-doped samples show that the higher level of oxygen vacancies is located on both the CuO2 planes and the apical oxygen sites for the pure sample compared to those of the Ca-doped sample. The present results suggest that the decrease in T c observed in the Ca-doped sample is mainly caused by the hole overdoping effect rather than by oxygen vacancies in the CuO2 planes.

Keywords

LuBa2Cu3O7−z Ca doping Structure Superconductivity Local structure 

Notes

Acknowledgements

This work was supported by National Research Foundation Grants (NRF-2012R1A1A2042519 and NRF-2015R1D1A1A01059891). We express our thanks to the Central Laboratory of the Kangwon National University for the help with the XRD measurements. We thank the HANARO team for the experimental assistance during the collection of neutron diffraction data.

References

  1. 1.
    Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: Physica C 176, 95 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Tallon, J.L., Bernhard, C., Shaked, H., Hittman, R.L., Jorgensen, J.D.: Phys. Rev. B 51, 12911 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, R.S., Cooper, J.R., Loram, J.W., Zhou, W., Lo, W., Edwards, P.P., Liang, W.Y.: Solid State Commun. 76, 679 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    Berastegui, P., Eriksson, S.G., Johansson, L. G., Kakihana, M., Osada, M., Mazaki, H., Tochihara, S.: J. Solid State Chem. 127, 56 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Manthiram, A., Goodenough, J.B.: Physica C 159, 760 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Joshi, A.G., Kuberkar, D.G., Kulkarni, R.G.: Physica C 320, 87 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Pansuria, K.M., Kuberkar, D.G., Kulkarni, R.G.: Supercond. Sci. Technol. 10, 831 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Suard, E., Maignan, A., Caignaert, V., Raveau, B.: Physica C 200, 43 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Kuberkar, D.G., Shah, N.A., Thampi, R.S., Rayaprol, S., Prasad, R., Kulkarni, R.G.: Int. J. Inorg. Mater. 3, 59 (2001)CrossRefGoogle Scholar
  10. 10.
    Pansuria, K.M., Joshi, U.S., Kuberkar, D.G., Baldha, G.J., Kulkarni, R.G.: Solid State Commun. 98, 1095 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Manthiram, A., Lee, S.J., Goodenough, J.B.: J. Solid State Chem. 73, 278 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Fisher, B., Genossar, J., Kuper, C.G., Patlagan, L., Reisner, G.M., Knizhnik, A.: Phys. Rev. B 47, 6054 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Kucera, J.T., Bravman, J.C.: Phys. Rev. B 51, 8582 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Sedky, A., Gupta, A., Awana, V.P.S., Narlikar, A.V.: Phys. Rev. B 58, 12495 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Tallon, J.L., Williams, G.V.M.: Phys. Rev. B 61, 9820 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, H.K., Kim, Y.H.: J. Korean Phys. Soc. 48, 1151 (2006)Google Scholar
  17. 17.
    Lee, H.K.: Adv. Sci. Technol. 47, 108 (2006)CrossRefGoogle Scholar
  18. 18.
    Hodorowicz, E., Hodorowicz, S.A., Eick, H.A.: J. Alloys Compd. 181, 442 (1992)CrossRefGoogle Scholar
  19. 19.
    Lee, H.K.: J. Supercond. Nov. Magn. 25, 2519 (2012)CrossRefGoogle Scholar
  20. 20.
    Izumi, F., Momma, K.: Solid State Phenom. 130, 15 (2007)CrossRefGoogle Scholar
  21. 21.
    Lee, M.S., Lee, H.K.: Prog. Supercond. 16, 6 (2014)Google Scholar
  22. 22.
    Nazarova, E.K., Nenkov, K., Fuchs, G., Muller, K.H.: Physica C 436, 25 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Wada, T., Yaegashi, Y., Ichinose, A, Yamauchi, H., Tanaka, S.: Phys. Rev. B 44, 2341 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    Lee, H.K., Bae, S.M., Choi, Y.N.: J. Supercond. Nov. Magn. 23, 823 (2010)CrossRefGoogle Scholar
  25. 25.
    Lee, H.K., Kim, Y.I.: J. Alloys Compd. 646, 517 (2015)CrossRefGoogle Scholar
  26. 26.
    Watkins, S.F., Fronczek, F.R., Wheelock, K.S., Goodrich, R.G., Hamilton, W.O., Johnson, WW: Acta Cryst. C44, 3 (1988)Google Scholar
  27. 27.
    Paulus, E.F., Miehe, G., Fuess, H., Yehia, I., Lochner, U.: J. Solid State Chem. 90, 17 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Brese, N.E., O’Keeffe, M., Ramakrishna, B.L., Von Dreele, R.B.: J. Solid State Chem. 89, 184 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., Kwok, W.K.: Phys. Rev. B 41, 1863 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Karppinen, K., Yamauchi, H., Fujinami, K., Nakane, T., Peitola, K.P., Rundlof, H., Tellgren, R.: Phys. Rev. B 60, 4378 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Awana, V.P.S., Malik, S.K., Yelon, W.B., Cardoso, C.A., de Lima, O.F., Gupta, A., Sedky, A., Narlikar, A.V.: Physica C 338, 197 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Kangwon National UniversityChuncheonRepublic of Korea
  2. 2.Korea Research Institute of Standards and ScienceDaejeonRepublic of Korea

Personalised recommendations