Josephson Effect in the Micron and Submicron YBCO Constrictions Fabricated Using the Femtosecond Laser Technique

  • Patrice Umenne
  • Simon Lam
  • Jia Du
  • V. V. Srinivasu
Original Paper
  • 105 Downloads

Abstract

A femtosecond laser was used successfully to fabricate planar micron and submicron-sized constrictiontype Josephson junctions on YBa2Cu3O7−x thin films. A simple program using G-code (control systems) programming language was written to control the movement of the sample stage during the etching process. The constriction’s geometry was investigated using both atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical transport measurements were performed at different temperatures. Shapiro steps were observed and analyzed. The micron-sized constriction shows a linear relationship for the measured critical current against the temperature which is consistent with the behavior of an S–s’–Stype Josephson junction where “S” stands for a bulk superconductive material that is untouched by the laser and “s”’ is superconducting material whose critical temperature is lower than the value of “S” In the case of the narrower submicronsized constriction, the measured critical current dependence with temperature shows an exponential decay, which is consistent with the behavior of the long S–N–Stype Josephson junction where “N” stands for a normal material. A model is proposed to describe the observed behavior by considering the effect of sample heating during the constriction’s fabrication.

Keywords

Femtosecond laser Josephson junction YBa2Cu3O7−x thin films Micron constriction Submicron constriction 

Notes

Acknowledgements

I would like to acknowledge the contribution to this work of Ms. Jeina Lazar from CSIRO, Australia. She assisted with the process of making Au gold contacts and wire bonding each sample in order to perform the DC IV measurements.

References

  1. 1.
    Hao, L., Cox, D.C., Gallop, J.C.: Supercond. Sci. Technol. 22, 064011 (2009).  https://doi.org/10.1088/0953-2048/22/6/064011 ADSCrossRefGoogle Scholar
  2. 2.
    Zhai, H.-Y., Chem, Q.Y., Xu, X.W., Strikovski, M., Miller, J., Chu, W.K.: Physica C 341–348 (part 3), 1587–1588 (2000).  https://doi.org/10.1016/S0921-4534(00)01434-9 CrossRefGoogle Scholar
  3. 3.
    Seo, H.W., Chen, Q.Y., Wang, C., Chu, W.K., Chang, T.M., Lee, S.F., Liou, Y.: Int. J. Mod. Phys. B 15(24 & 25), 3359–3360 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Lee, S.-G., Oh, S.-H., Kang, C.S., Kim, S.-J.: Phys. C: Supercond. 460–462(Part 2), 1468–1469 (2007)CrossRefGoogle Scholar
  5. 5.
    Schneider, J., Kohlstedt, H., Wordenweber, R.: Appl. Phys. Lett. 63, 2426 (1993)  https://doi.org/10.1063/1.110496 ADSCrossRefGoogle Scholar
  6. 6.
    Papari, G., Carillo, F., Born, D., Bartoloni, L., Gambale, E., Stornaiuolo, D., Pingue, P., Beltram, F., Tafuri, F.: IEEE Trans. Appl. Supercond. 19(3), 183–186 (2009).  https://doi.org/10.1109/TASC.2009.2019023 ADSCrossRefGoogle Scholar
  7. 7.
    Kajino, K., Kimura, T., Horii, Y., Watanabe, M., Inoue, M., Fujimaki, A.: IEEE Trans. Appl. Supercond. 19(3), 178–182 (2009).  https://doi.org/10.1109/TASC.20092018189 ADSCrossRefGoogle Scholar
  8. 8.
    Wendt, J.R., Marteins, J.S., Ashby, C.I.H., Plut, T.A., Hietala, V.M., Tigges, C.P., Ginley, D.S.: Appl. Phys. Lett. 61, 1597 (1992)  https://doi.org/10.1063/1.107508 ADSCrossRefGoogle Scholar
  9. 9.
    Stornaiuolo, D., Cedergren, K., Rotoli, G., Born, D., Bauch, T., Barone, A., Lombardi, F., Tafuri, F.: J. Phys. Conf. Ser. 150, 052246 (2009).  https://doi.org/10.1088/1742-6596/150/5/052246 CrossRefGoogle Scholar
  10. 10.
    Stornaiuolo, D., Cedergren, K., Rotoli, G., Born, D., Bauch, T., Barone, A., Lombardi, F., Tafuri, F.: IEEE Trans. Appl. Supercond. 19(3), 174–177 (2009).  https://doi.org/10.1109/TAC.2009.2018546 ADSCrossRefGoogle Scholar
  11. 11.
    Elkaseh, A.A.O., Perold, W.J., Srinivasu, V.V.: J. Appl. Phys. 108, 053914 (2010).  https://doi.org/10.1063/1/3481425 ADSCrossRefGoogle Scholar
  12. 12.
    Bouchiat, V.: Supercond. Sci. Technol. 22, 064002 (2009).  https://doi.org/10.1088/0953-2048/22/064002 ADSCrossRefGoogle Scholar
  13. 13.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. 10 th Anniversary Edition. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Corlevi, S: Quantum effects in nanoscale Josephson junction circuits. Ph.D. thesis, AlbaNova Universitet (2006)Google Scholar
  15. 15.
    Wilhelm, F.K., Semba, K.: Physical Realization of Quantum Computing: Are the DiVincenzo Criteria Fulfilled, edited by N. Bajagaram, S. Kanemitsu, Mikio Nakahara, (2004)Google Scholar
  16. 16.
    Foley, C.P., Hilgenkamp, H.: Supercond. Sci. Technol. 22, 064001 (2009).  https://doi.org/10.1088/0022-3727/43/47/474004 ADSCrossRefGoogle Scholar
  17. 17.
    Tilbrook, D.L.: Supercond. Sci. Technol. 22, 064003 (2009).  https://doi.org/10.1088/0953-2048/22/6/064003 ADSCrossRefGoogle Scholar
  18. 18.
    Wernsdorfer, W: Supercond. Sci. Technol. 22, 064013 (2009).  https://doi.org/10.1088/0953-2048/22/6/064013 ADSCrossRefGoogle Scholar
  19. 19.
    Cybart, S.A., Cho, E.Y., Wong, T.J., Wehlin, B.H., Ma, M.K., Huynh, C., Dynes, R.C.: Nat. Nanotechnol. 10, 598–602 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Cybart, S.A., Anton, S.M., Wu, S.M., Clarke, J., Dynes, R.C.: Nano Lett. 9, 3581–3585 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Buttner, U, Hardie, GL, Rossouw, R, Srinivasu, VV, Perold, WJ: Supercond. Sci. Technol. 20, S426–S429 (2007).  https://doi.org/10.1088/0953-2048/20/11/S24 ADSCrossRefGoogle Scholar
  22. 22.
    Dubos, P., Courtois, H., Pannetier, B., Wilhelm, F.K., Zaikin, A.D., Schon, G.: Phys. Rev. B 63, 064502 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Schaffer, C.B., Brodeur, A., García, J.F., Mazur, E.: Opt. Lett. 26(2), 93–95 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Opt. Lett. 21(21), 1729–1731 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Serbin, J., et al.: Opt. Lett. 28(5), 301–303 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Minoshima, K., Matsumoto, H.: Appl. Opt. 39(30), 5512–5517 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Sugar, A.: Curr. Opin. Ophthalmol. 13(4), 246–249 (2002)CrossRefGoogle Scholar
  28. 28.
    Grobnic, D., Mihailov, S.J., Smelser, C.W., Ding, H.: IEEE Photonics Technol. Lett. 16(11), 2505–2507 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Vorobyev, A.Y., Guo, C.: Appl. Phys. Lett. 92(4), 41914 (2008)CrossRefGoogle Scholar
  30. 30.
    Umenne, P., Srinivasu, V.V.: J. Mater. Sci. Mater. Electron. 28(8), 5817–5826 (2017) https://link.springer.com/article/10.1007/s10854-016-6253-z CrossRefGoogle Scholar
  31. 31.
    Pedyash, M.V., Blank, D.H., Rogalla, H.: Appl. Phys. Lett. 68, 1156 (1996).  https://doi.org/10.1063/1.115708 ADSCrossRefGoogle Scholar
  32. 32.
    Heida, J.P.: Josephson currents in two dimensional mesoscopic ballistic conductors. PhD Thesis, University of Groningen, Groningen (1998)Google Scholar
  33. 33.
    Wilhelm, F.K., Zaikin, A.D., Schon, G.: J. Low Temp. Phys. 106, 305 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Sobolewski, R., Xiong, W., Kula, W., Gavaler, J.R.: Appl.Phys. Lett. 64, 643 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Irmer, B., Blick, R.H., Simmel, F., Godel, W., Lorenz, H., Kotthaus, J.P.: Appl. Phys. Lett. 73, 2051 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Srinivasu, V.V., Perold, W.J.: IEEE Trans. Appl. Supercond. 20, 3 (2009)Google Scholar
  37. 37.
    Tinkham, M.: Introduction to superconductivity, second edition, Dover, ISBN -13: 978-0486435039 (2004)Google Scholar
  38. 38.
    Likharev, K.K.: Rev. Mod. Phys. 51, 101 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    Veldhorst, M., Snelder, M., Hoek, M., Gang, T., Guduru, V.K., Wang, X.L., Zeitler, U., van der Wiel, W.G., Golubov, A.A., Hilgenkamp, H., Brinkman, A.: Nat. Mater. Lett. 11, 417–421 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Shapiro, S., Janus, A.R., Holly, S.: Rev. Mod. Phys. 36, 223 (1964)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Patrice Umenne
    • 1
  • Simon Lam
    • 2
  • Jia Du
    • 2
  • V. V. Srinivasu
    • 3
  1. 1.Department of Electrical and Mining EngineeringUniversity of South AfricaJohannesburgSouth Africa
  2. 2.CSIRO ManufacturingLindfieldAustralia
  3. 3.Physics DepartmentUniversity of South AfricaJohannesburgSouth Africa

Personalised recommendations