Skip to main content
Log in

On the Origin of a Small Hole Pocket in the Fermi Surface of Underdoped YBa2Cu3O y

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The comprehensive experimental studies of the quantum oscillations (QOs) in YBa2Cu3O y (YBCO) lead N. Doiron-Leyraud et al. (Nature Communications 6:6034, 2015) to detection of small hole pockets below the transition into the charge-ordered (CO) phase. Their interpretation of the observed energy spectrum imposes serious constraints for the possible origin of electron and hole pockets—both of them should be due to the Fermi surface (FS) reconstruction at charge ordering with biaxial order parameter. However, the results of recent X-ray experiments which reveal the uniaxial CO in the underdoped YBCO make such interpretation questionable. We show that uniaxial CO parameter in combination with preexisting electron pocket at the Γ-point of Brillouin zone suggests a plausible interpretation of QOs associated with small hole pockets in YBCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Doiron-Leyraud, N., et al.: Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy. Nat. Commun. 6, 6034 (2015). http://dx.doi.org/https://doi.org/10.1038/ncomms7034

    Article  Google Scholar 

  2. Yoshida, T., et al.: Pseudogap, superconducting gap, and Fermi arc in high-Tc cuprates revealed by angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn. 81, 011006 (2012). https://doi.org/10.1143/JPSJ.81.011006

    Article  ADS  Google Scholar 

  3. Yoshida, T., et al.: Systematic doping evolution of the underlying Fermi surface of La2−xSrxCuO4. Phys. Rev. B 74, 224510 (2006). https://doi.org/10.1103/PhysRevB.74.224510

    Article  ADS  Google Scholar 

  4. Fournier, D., et al.: Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6 + x . Nat. Phys. 6, 905 (2010). https://doi.org/10.1038/nphys1763

    Article  Google Scholar 

  5. Barišić, N., et al.: Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. PNAS 110, 12235 (2013). https://doi.org/10.1073/pnas.1301989110

    Article  ADS  Google Scholar 

  6. Gor’kov, L.P.: Kinetics of excitations on the Fermi arcs in underdoped cuprates at low temperatures. Phys. Rev. (Rapid Comm.) B 88, 041104 (2013). https://doi.org/10.1103/PhysRevB.88.041104

    Article  ADS  Google Scholar 

  7. Doiron-Leyraud, N., et al.: Quantum oscillations and the Fermi surface in an underdoped high- T c superconductor. Nature 447, 565–568 (2007). https://doi.org/10.1038/nature05872

    Article  ADS  Google Scholar 

  8. Taillefer, L.J.: Fermi surface reconstruction in high- T c superconductors. Phys.: Condens. Matter 21, 164212 (2009). https://doi.org/10.1088/0953-8984/21/16/164212

    ADS  Google Scholar 

  9. Chang, J., et al.: Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012). https://doi.org/10.1038/nphys2456

    Article  Google Scholar 

  10. Ghiringhelli, G., et al.: Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6 + x . Science 337, 821–825 (2012). https://doi.org/10.1126/science.1223532

    Article  ADS  Google Scholar 

  11. Blackburn, E., et al.: Inelastic x-ray study of phonon broadening and charge-density wave formation in ortho-II-ordered YBa2Cu3O6.54. Phys. Rev. B 88, 054506 (2013). https://doi.org/10.1103/PhysRevB.88.054506

    Article  ADS  Google Scholar 

  12. Blackburn, E., et al.: X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013). https://doi.org/10.1103/PhysRevLett.110.137004

    Article  ADS  Google Scholar 

  13. Wu, T., et al.: Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3O y . Nature 477, 191–194 (2011). https://doi.org/10.1038/nature10345

    Article  ADS  Google Scholar 

  14. Doiron-Leyraud, N., et al.: Hall, Seebeck, and Nernst coefficients of underdoped HgBa2CuO4+δ: Fermi-surface reconstruction in an archetypal cuprate superconductor. Phys. Rev. X 3, 021019 (2013). https://doi.org/10.1103/PhysRevX.3.021019

    Google Scholar 

  15. Gor’kov, L.P., Teitel’baum, G.B.: Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering. Sci. Rep. 5, 8524 (2015). https://doi.org/10.1038/srep08524

    Article  Google Scholar 

  16. Millis, A.J., Norman, M.R.: Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007). https://doi.org/10.1103/PhysRevB.76.220503

    Article  ADS  Google Scholar 

  17. Li, J.-X., Wu, C.-Q., Lee, D.-H.: Checkerboard charge density wave and pseudogap of high- T c cuprate. Phys. Rev. B 74, 184515 (2006). https://doi.org/10.1103/PhysRevB.74.184515

    Article  ADS  Google Scholar 

  18. Seo, K., Chen, H.-D., Hu, J.: D-wave checkerboard order in cuprates. Phys. Rev. B 76, 020511(R) (2007). https://doi.org/10.1103/PhysRevB.76.020511

    Article  ADS  Google Scholar 

  19. Allais, A., Chowdhury, D., Sachdev, S.: Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates. Nat. Commun. 5, 5771 (2014). https://doi.org/10.1038/ncomms6771

    Article  ADS  Google Scholar 

  20. Comin, R., et al.: Symmetry of charge order in cuprates. Nat. Mater. 14, 796–800 (2015). https://doi.org/10.1038/nmat4295

    Article  ADS  Google Scholar 

  21. Comin, R., et al.: Broken translational and rotational symmetry via charge stripe order in underdoped YBCO. Science 347, 1335–1339 (2015). https://doi.org/10.1126/science.1258399

    Article  ADS  Google Scholar 

  22. Comment to Comin R. et al.: Science 347, 1335–1339 (2015): Fine B., Science 351, 235-a (2016). https://doi.org/10.1126/science.aac4454

  23. Authors response to Comment to Comin R. et al.: Science 347, 1335–1339 (2015): Fine B., Science 351, 235-a (2016): Science v.351, 235-b (2016). https://doi.org/10.1126/science.aac4778

  24. Kharkov, Y.A., Sushkov, O.P.: The amplitudes and the structure of the charge density wave in YBCO. Sci. Rep. 6, 34551 (2016). https://doi.org/10.1038/srep34551

    Article  ADS  Google Scholar 

  25. Chang, J., et al.: Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6 + x . Nat. Commun. 7, 11494 (2016). https://doi.org/10.1038/ncomms11494

    Article  ADS  Google Scholar 

  26. Jang, H., et al.: Ideal charge-density-wave order in the high-field state of superconducting YBCO. PNAS 113, 14645–14650 (2016). https://doi.org/10.1073/pnas.1612849113

    Article  ADS  Google Scholar 

  27. Riggs, S.C., et al.: Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor. Nat. Phys. 7, 332–335 (2011). https://doi.org/10.1038/nphys1921

    Article  Google Scholar 

  28. Kemper, J.B., et al.: Thermodynamic signature of a magnetic-field-driven phase transition within the superconducting state of an underdoped cuprate. Nat. Phys. 12, 47–51 (2016). https://doi.org/10.1038/nphys3502

    Article  Google Scholar 

  29. Gor’kov, L.P.: Quantum oscillations in the vortex state of underdoped YBa2Cu3O6.5 and other multiband superconductors. Phys. Rev. B 86, 060501 (2012). https://doi.org/10.1103/PhysRevB.86.060501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of L. P. G. was supported by the NHMFL through NSF Grant No. DMR-1157490, the State of Florida, and the U.S. Department of Energy and that of G. B. T. by the Russian Academy of Sciences through Grants RAS 1.2P and RAS IV.2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Teitel’baum.

Additional information

Comment of G. B. Teitel’baum

The present paper is the updated version of our preprint arXiv:1409.4798. Its submission to the regular scientific journal was postponed until the reliable experimental data on the type of charge ordering will be available. In the fall of 2016 when several experimental papers verified that the ground state of underdoped YBCO exhibits the uniaxial charge order, we decided to publish the results announced in our preprint. Unfortunately, it happened so, that the final text was prepared without Lev Gor’kov—the Scientist who will be missed by the whole physical community.

Lev P. Gor’kov passed away on December 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gor’kov, L.P., Teitel’baum, G.B. On the Origin of a Small Hole Pocket in the Fermi Surface of Underdoped YBa2Cu3O y . J Supercond Nov Magn 31, 657–661 (2018). https://doi.org/10.1007/s10948-017-4367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4367-z

Keywords

Navigation