Ab Initio Investigation on Electronic, Magnetic, Mechanical, and Thermodynamic Properties of AMO3 (A = Eu, M = Ga, In) Perovskites

  • Sajad Ahmad Dar
  • Vipul Srivastava
  • Umesh Kumar Sakalle
  • Shakeel Ahmad Khandy
Original Paper

Abstract

The structural, electronic, magnetic, elastic, and thermodynamic properties of cubic AMO3 perovskites (A = Eu, M = Ga, In) have been successfully studied within density functional theory using full-potential linearized augmented plane wave (FP-LAPW). The structural study reveals that both the compounds are stable in ferromagnetic states. The GGA + U calculated spin-polarized electronic band and density of states present the half-metallic nature of both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 μ B for EuGaO3 and approximately 7 μ B for EuInO3. From elastic calculation, the three independent elastic constants (C 11, C 12, C 44) have been acquired to yield the mechanical properties like Young modulus (Y ), shear modulus (G), Poisson ratio (ν), and anisotropic factor (A). The calculated values of B/G show that both the compounds are ductile in nature. The thermodynamic study was also accomplished by exploring the thermodynamic parameters like specific heat, heat capacity, thermal expansion, Grüneisen parameter, Debye temperature, etc. within the temperature range 0 to 900 K and pressure range 0 to 50 GPa.

Keywords

Perovskite oxides Half metallic Ferromagnetic Mechanical properties Thermodynamic properties 

References

  1. 1.
    Zhou, J.-S., Goodenough, J.B., Gallardo-Amores, J.M., Moran, E., Alario-franco, M.A., Caudillo, R.: Phys. Rev. B 74, 014422 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Banach, G., Temmerman, W.M.: Phys. Rev. B 69, 054427 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Lee, S., Pirogov, A., Kang, M., Jang, K.H., Yonemura, M., Kaniyama, T., et al: Nature 451, 805 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Choi, T., Horibe, Y., Yi, H.T., Choi, Y.J., Weida, W.U., Cheong, S.: Nat. Mater 9, 253 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Lee, J.H., Rabe, K.M.: Phys. Rev. Lett. 104, 207204 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Srinivasan, G., Rasmussen, E.T., Levin, B.J., Hayes, R.: Phys. Rev. B 65, 134402 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Jones, L.E.A., Liebermann, R.C.: Phys. Earth Plan. Inter. 9, 101 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    Pierre, J., Nossov, A., Vassilier, V., Ustinov, V.: Phys. Lett. A 250, 435 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Sahli, B., Bouafia, H., Abidri, B., Abdellaoui, A., Hiadsi, S., Akriche, A., et al.: J. Alloys Compd. 635, 163 (2015)CrossRefGoogle Scholar
  10. 10.
    Tokura, Y. (ed.): Advances in condensed matter science, vol. 2. Gordon and Breach, The Netherlands (2000)Google Scholar
  11. 11.
    Kandy, S.A., Gupta, D.C.: R.S.C. Adv. 6, 82014 (2016)Google Scholar
  12. 12.
    Yusuf, S., Gupta, D.C.: Mat. Chem. Phy. 192, 33 (2017)CrossRefGoogle Scholar
  13. 13.
    Bhat, T.M., Gupta, D.C.: J. Magn. Magn, Mater. 435, 173 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Sawamoto, H.: Jpn. J. Appl. Phys. 12, 1432 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    Sandeep, Rai, D.P., Shankar, A., Ghimiri, M.P., Khenta, R., Thapa, R.K.: Phy. Scr. 90, 065803 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Fiebig, M.: J. Phys D Appl:Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Behran, R.B., Iqbal, M.A., Alaye-Abbas, S.M., Sajjad, M., Yaseen, M., Arshed, M.I., Murtaza Matt, G.: Sci. Semi-conductor Proc. 41, 297 (2016)CrossRefGoogle Scholar
  18. 18.
    Hill, N.A.: Annu. Rev. Mater 32, 1 (2002)CrossRefGoogle Scholar
  19. 19.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, 86 (1964)ADSCrossRefGoogle Scholar
  20. 20.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kuasnicke, D., Luitz, J.: Introduction to WIEN2K Package ISBN 3-9501031-1-2 (2001)Google Scholar
  21. 21.
    Khandy, S.A., Gupta, D.C.: R.S.C. Adv 6, 48009 (2016)Google Scholar
  22. 22.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Kohn, W., Sham, L.S.: Phys. Rev. A 140, 1133 (1965)ADSCrossRefGoogle Scholar
  25. 25.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Charpin, T.: A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001)Google Scholar
  27. 27.
    Blanco, M.A., Pendas, A.M., Francisco, E.J.: J. Mol. Struct. THEOCHEM 268, 245 (1996)CrossRefGoogle Scholar
  28. 28.
    Otero-de-la-Roza, Abbasi-Perez, D., Luaea, V.: Commun. 182, 2232 (2011)Google Scholar
  29. 29.
    Otero-de-la-Roza, Luaea, V.: Phys. Rev. B 84, 184103 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Birch, F.: J. Appl. Phys. 9, 279 (1938)ADSCrossRefGoogle Scholar
  31. 31.
    Geguzina, G.A., Sakhenko, V.P.: Crystall. Rep. 49, 15 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Verma, A.S., Jindal, V.K.: J. Alloy. Comp. 485, 514 (2009)CrossRefGoogle Scholar
  33. 33.
    Verma, A.S., Kumar, A.: J. Alloy Comp. 541, 210 (2012)CrossRefGoogle Scholar
  34. 34.
    Ali, Z., Ahmad, I., Reshak, A.: Physica B 410, 217 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Khandy, S.A., Gupta, D.C.: R.S.C Adv. 6, 48009 (2016)Google Scholar
  36. 36.
    Yousuf, S., Gupta, D.C.: Indian J. Phys. 99, 31 (2017)Google Scholar
  37. 37.
    Mehl, M.J., Klein, B.K., Papaconstantopoulos, D.A.: Intermetallic compounds: Principle and practice. In: J.H. Westbrook, R.L, Fleischeir (eds.) Principles, vol. 1. Wiley (1995)Google Scholar
  38. 38.
    Voigt, W.: Lehrbush der Kristallphysik. Taubner, Leipzig (1928)Google Scholar
  39. 39.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Measurements. M.C Graw Hill, New York (1973)Google Scholar
  40. 40.
    Hill, R.: Proc. Phy. Soc. London 65, 349 (1952)ADSCrossRefGoogle Scholar
  41. 41.
    Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philo. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  42. 42.
    Bhat, T.M., Gupta, D.C.: J. Electron. Mater. 45, 6012 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Pertifor, D.G.: Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  44. 44.
    Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Sci. 31, 1 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Bencherif, K., Yakoubi, A., Della, N., Abid, O.M., Khachai, H., Ahmad, R., et al.: J. Elec. Materi. 45, 3479 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Petit, A.T., Dulong, P.L.: Ann. Chim. Phys. 10, 395 (1819)Google Scholar
  47. 47.
    Quiang, L., Duo-Hui, H., Qi-Long, C., Fan-Hou, W.: Chin. Phys. B 22, 037101 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Dar, S.A., Srivastava, V., Sakalle, U.K., Khandy, S., Gupta, D.C.: J. Supcon. Novl. Magn.  https://doi.org/10.1007/s10948-017-4181-7
  49. 49.
    Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Supcon. Novl. Magn.  https://doi.org/10.1007/s10948-017-4155-9

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sajad Ahmad Dar
    • 1
  • Vipul Srivastava
    • 2
  • Umesh Kumar Sakalle
    • 3
  • Shakeel Ahmad Khandy
    • 4
  1. 1.Department of PhysicsGovt. Motilal Vigyan Mahavidyalya CollegeBhopalIndia
  2. 2.Department of PhysicsNRI Institute of Research & TechnologyBhopalIndia
  3. 3.Department of PhysicsS. N. P. G. CollegeKhandwaIndia
  4. 4.School of PhysicsJiwaji UniversityGwaliorIndia

Personalised recommendations