Accurate Bandgap of Zr x Al1−x N Using Modified Becke–Johnson (mBJ) Exchange Potential

Abstract

Structural parameters and the electronic structure of wurtzite Zr x Al1−x N (0 ≤ x ≤ 1) have been investigated by means of the full-potential linearized augmented plane wave (FP-LAPW) with the modified Becke–Johnson (mBJ) potential, which provides an improved value of the bandgap, as embodied in the WIEN2k code. We found that the calculated band structure shows that the crystal is a semiconductor with a direct bandgap for x = 0 (AlN) and metallic for x ≥ 0.25. The comparison of our results with the experimental and other theoretical calculations shows that the results obtained by mBJ are much superior to other theoretical techniques and are very close to the experimental ones.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Knotek, O., Mqnz, W.D., Leyendecker, T.: J. Vac. Sci. Technol. A: Vac. Surf. Films 5, 2173 (1987)

    ADS  Article  Google Scholar 

  2. 2.

    Probst, J., Gbureck, U., Thull, R.: Surf. Coat. Technol. 148, 226 (2001)

    Article  Google Scholar 

  3. 3.

    Holleck, H.: Surf. Coat. Technol. 36, 151 (1988)

    Article  Google Scholar 

  4. 4.

    Lamni, R., Sanjins, R., Lvy, F.: Thin Solid Films 478, 170 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    Escorcia-Salas, G.E., Sierra-Ortega, J., Martinez, J.A.R.: J. Micro-electron. 39, 579581 (2008)

    Google Scholar 

  6. 6.

    Sheng, S.H., Zhang, R.F., Veprek, S.: Acta Mater. 56, 968 (2008)

    Article  Google Scholar 

  7. 7.

    Sierra-Ortega, J., Escorcia-Salas, G.E., Gutiérrez-Senior, E.D., Martinez, J.A.R.: J. Supercond. Nov. Magn. 26, 2451 (2013)

    Article  Google Scholar 

  8. 8.

    Gutiérrez-Senior, E.D., Martinez, J.A.R., Sierra-Ortega, J.: J. Supercond. Nov. Magn. 26, 2471 (2013)

    Article  Google Scholar 

  9. 9.

    Perdew, J.P., Wang, Y.: Phys. Rev. 46, 12947 (1992)

    Article  Google Scholar 

  10. 10.

    Koller, D., et al.: Phys. Rev. B 83, 195134 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Reshak, A.H., Parasyuk, O.V., Fedorchuk, A.O., Kamarudin, H., Auluck, S., Chysky, J.: J. Phys. Chem. B 117, 15220 (2013)

  13. 13.

    Kim, Y.-S., et al.: Phys. Rev. B 82, 205212 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Feng, W., et al.: Phys. Rev. B 82, 235121 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    Singh, D.J.: Phys. Rev. B 82, 205102 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    Becke, A.D., Roussel, M.R.: Phys. Rev. A 39, 3761 (1989)

    ADS  Article  Google Scholar 

  17. 17.

    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An augmented plane wave + local orbitals program for calculating crystal properties. Technische Universität Wien, Austria (2001)

  18. 18.

    Murnaghan, F.D.: Proc. Natl. Acad Sci. U. S. A. 30, 5390 (1944)

    Google Scholar 

  19. 19.

    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Vegard, L.Z.: Physik 5, 17 (1921)

  21. 21.

    Stampfl, C., Van de Walle, C.G.: Phys. Rev. B 59, 5521 (1999)

    ADS  Article  Google Scholar 

  22. 22.

    Schulz, H., Thiemann, K.H.: Solid State Commun. 23, 815 (1977)

    ADS  Article  Google Scholar 

  23. 23.

    Tsubouchi, K., Sugai, K., Mikoshiba, N.: Ultrasonics Symposium Proceedings, p 1. IEEE, New York (1981)

    Google Scholar 

  24. 24.

    Edgard, J.H.: Electronic Materials information Service (EMISE) Data Reviews Series, Institution Electrical Engineers (IEE), London (1994)

  25. 25.

    Serrano, E.J., Rubio, A.: Phys. Rev. B 62, 16612 (2000)

    ADS  Article  Google Scholar 

  26. 26.

    Cui, X.Y., Delley, B., Stampfl, C.: J. Appl. Phys. 108, 103701 (2010)

    ADS  Article  Google Scholar 

  27. 27.

    Berger, L.I.: Semiconductors Materials, p. 124. Chemical Rubber Company, New York (1997)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Belhachi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belhachi, S. Accurate Bandgap of Zr x Al1−x N Using Modified Becke–Johnson (mBJ) Exchange Potential. J Supercond Nov Magn 31, 1545–1548 (2018). https://doi.org/10.1007/s10948-017-4364-2

Download citation

Keywords

  • Electronic structure
  • mBJ
  • Zr x Al1−x N
  • FP-LAPW