Skip to main content
Log in

A New Model of Pseudogap Physics in the Cuprates

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We discuss a short-range order mechanism for understanding pseudogap physics of cuprates in which the competition between a variety of magnetic orders frustrates the development of the long-range order. We show in particular that the competition between the effects of Van Hove singularity nesting and conventional Fermi surface nesting leads to a material-dependent transition between Mott and Slater physics, and the emergence of a spin-frustrated state in the crossover region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moriya, T.: Spin Fluctuations in Itinerant Electron Magnetism. Springer, Berlin (1985)

    Book  Google Scholar 

  2. Markiewicz, R.S., Buda, I.G., Mistark, P., Bansil, A.: Entropic origin of pseudogap physics and a Mott-Slater transition in cuprates. Sci. Repts. 7, 44008 (2017)

    Article  ADS  Google Scholar 

  3. Ornstein, L.S., Zernike, F.: Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amsterdam 17, 793–806 (1914)

    Google Scholar 

  4. Hertz, J.A.: Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976)

    Article  ADS  Google Scholar 

  5. Millis, A.J.: Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    Article  ADS  Google Scholar 

  6. Markiewicz, R.S.: Mode-coupling model of Mott gap collapse in the cuprates: natural phase boundary for quantum critical points. Phys. Rev. B 70, 174518 (2004)

    Article  ADS  Google Scholar 

  7. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  ADS  Google Scholar 

  8. Ouazi, S., et al.: Impurity-induced local magnetism and density of states in the superconducting state of YBa2Cu3O7. Phys. Rev. Lett. 96, 127005 (2006)

    Article  ADS  Google Scholar 

  9. Alloul, H., Gabay, J., Bobroff, M., Hirschfeld, P.: Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45 (2009)

    Article  ADS  Google Scholar 

  10. Labbé, J., Barisić, S., Friedel, J.: Strong-coupling superconductivity in V3X type of compounds. Phys. Rev. Lett. 19, 1039 (1967)

    Article  ADS  Google Scholar 

  11. Marsiglio, F.: This conference

  12. Jelitto, R.: The density of states of some simple excitations in solids. J. Phys. Chem. Sol. 30, 609 (1969)

    Article  ADS  Google Scholar 

  13. Jarlborg, T., Bianconi, A.: Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor. Sci. Rep. 6, 24816 (2016)

    Article  ADS  Google Scholar 

  14. Mazziotti, M.V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A.: Possible Fano resonance for high- T c multi-gap superconductivity in p-Terphenyl doped by K at the Lifshitz transition. EPL (Europhysics Letters) 118, 37003 (2017)

    Article  ADS  Google Scholar 

  15. Aeppli, G., Mason, T.E., Hayden, S.M., Mook, H.A., Kulda, J.: Nearly singular magnetic fluctuations in the normal state of a high- T c cuprate superconductor. Science 278, 1432–1435 (1997)

    Article  ADS  Google Scholar 

  16. Anderson, P.W.: Is there glue in cuprate superconductors? Science 316, 1705 (2007)

    Article  Google Scholar 

  17. Maier, T.A., Poilblanc D., Scalapino, D.J.: Dynamics of the pairing interaction in the Hubbard and t-J models of high-temperature superconductors. Phys. Rev. Lett. 100, 237001 (2008)

    Article  ADS  Google Scholar 

  18. Rice, T.M., Yang, K.-Y., Zhang, F.C.: A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates. Rep. Prog. Phys. 75, 016502 (2012)

    Article  ADS  Google Scholar 

  19. Jang, S.W., et al.: Direct theoretical evidence for weaker correlations in electron-doped and Hg-based hole-doped cuprates. Sci. Rep. 6, 33397 (2016)

    Article  ADS  Google Scholar 

  20. Mistark, P., Markiewicz, R.S., Bansil, A.: Nanoscale phase separation in deeply underdoped Bi2Sr2CuO6 + δ and Ca2CuO2Cl2. Phys. Rev. B 91, 140501(R) (2015)

    Article  ADS  Google Scholar 

  21. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out while RSM was on sabbatical at the Advanced Light Source in Berkeley and the Los Alamos National Laboratory, where he benefitted from many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Markiewicz.

Additional information

This work is supported by the US Department of Energy, Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352, and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC) and the allocation of supercomputer time at NERSC through grant number DE-AC02-05CH11231.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markiewicz, R.S., Buda, I.G., Mistark, P. et al. A New Model of Pseudogap Physics in the Cuprates. J Supercond Nov Magn 31, 651–655 (2018). https://doi.org/10.1007/s10948-017-4361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4361-5

Keywords

Navigation