Effects of Annealing Temperature and Compaction Pressure on Magnetic Properties of Fe–Si Powder Cores Fabricated by an Improved Bluing Method

  • Z. Zhang
  • P. Wu
  • S. J. Han
  • F. L. Tang
  • H. L. Su
  • X. C. Tong
  • Z. Q. Zou
  • Y. M. Wu
  • Y. C. Wu
  • Y. W. Du
Original Paper
  • 51 Downloads

Abstract

Fe-6.5wt%Si soft magnetic powder cores were prepared by using an improved bluing insulation method. A high-quality oxide insulation layer with good temperature stability was found to distribute continuously in the intervals between the Fe–Si particles. The effects of the annealing temperature and the compaction pressure on the core’s magnetic properties were investigated in detail. It was found that high temperature and low compaction pressure are beneficial to decrease the core’s inner stress and high compaction pressure is helpful to reduce the air gap. All the variations of the magnetic performance for the powder cores discussed in this paper were explained reasonably by considering these two factors. From the point of view of low loss, 760 °C and 2090 MPa were confirmed to be the relatively best annealing temperature and compaction pressure, respectively. The μ e , the % μ e at 100 Oe, and the loss at 50 kHz/1000 Gs for the core prepared under these two conditions are 63.57, 72.82%, and 547.66 mW/cm3, respectively.

Keywords

Fe-6.5wt%Si soft magnetic powder core Bluing coating Annealing temperature Compaction pressure Magnetic properties 

References

  1. 1.
    Ding, W., Jiang, L., Liao, Y., Song, J., Li, B., Wu, G.: J. Magn. Magn. Mater. 378, 232–238 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Wu, Z.Y., Fan, X.A., Wang, J., Li, G.Q., Gan, Z.H., Zhang, Z.: J. Alloys Comput. 617, 21–28 (2014)CrossRefGoogle Scholar
  3. 3.
    Fan, X.A., Wang, J., Wu, Z.Y., Li, G.Q.: Mater. Sci. Eng. B 201, 79–86 (2015)CrossRefGoogle Scholar
  4. 4.
    Sunday, K.J., Hanejko, F.G., Taheri, M.L.: J. Magn. Magn. Mater. 423, 164–170 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Huang, M.Q., Wu, C., Jiang, Y.Z., Yan, M.: J. Alloys Comput. 644, 124–130 (2015)CrossRefGoogle Scholar
  6. 6.
    Dong, S.J., Song, B., Zhang, X.F., Deng, C., Fenineche, N., Hansz, B., Liao, H., Coddet, C.: J. Alloys Comput. 584, 254–260 (2014)CrossRefGoogle Scholar
  7. 7.
    Lu, X.G., Liang, G.Y., Sun, Q.J., Yang, C.H.: J. Alloys Comput. 509, 5079–5083 (2011)CrossRefGoogle Scholar
  8. 8.
    Strečková, M., Medvecký, L’., Füzer, J., Kollár, P., Bureš, R., Fáberová, M.: Mater. Lett. 101, 37–40 (2013)CrossRefGoogle Scholar
  9. 9.
    Xie, D.Z., Lin, K.H., Lin, S.T.: J. Magn. Magn. Mater. 353, 34–40 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Li, Z.C., Dong, Y.Q., Pauly, S., Chang, C.T., Wei, R., Li, F.S., Wang, X.M.: J. Alloys Comput. 706, 1–6 (2017)CrossRefGoogle Scholar
  11. 11.
    Zhao, G.L., Wu, C., Yan, M.: J. Alloys Comput. 685, 231–236 (2016)CrossRefGoogle Scholar
  12. 12.
    Peng, Y.D., Yi, Y., Li, L.Y., Yi, J.H., Nie, J.W., Bao, C.X.: Mater. Des. 109, 390–395 (2016)CrossRefGoogle Scholar
  13. 13.
    Olekšáková, D., Füzer, J., Kollár, P., Roth, S.: J. Magn. Magn. Mater. 333, 18–21 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Peng, Y.D., Yi, Y., Li, L.Y., Ai, G., Wang, X.X., Chen, L.L.: J. Magn. Magn. Mater. 428, 148–153 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Schwindt, V.C., Ardenghi, J.S., Bechithold, P., Juan, A., Batic, B.S., Jenko, M., Gonzalez, E.A., Jasen, P.V.: Appl. Surf. Sci. 354, 401–407 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, X.Y., Lu, C.W., Guo, F., Lu, Z.C., Li, D., Zhou, S.X.: J. Magn. Magn. Mater. 324, 2727–2730 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, B., Wu, Z.B., Zhou, Z.Y., Yu, R.H.: J. Phys. D: Appl. Phys. 43, 365003–365008 (2010)CrossRefGoogle Scholar
  18. 18.
    Kim, Y.W., Choi, KC, Chung, Y.S., Choi, E., Nam, T.H.: J. Alloys Comput. 577S, S227–S231 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, H.J., Su, H.L., Geng, W.B., Sun, Z.G., Song, T.T., Tong, X.C., Zou, Z.Q., Wu, Y.C., Du, Y.W.: J. Supercond. Nov. Magn. 29, 463–468 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Z. Zhang
    • 1
    • 2
  • P. Wu
    • 3
  • S. J. Han
    • 1
    • 2
  • F. L. Tang
    • 2
  • H. L. Su
    • 1
    • 2
  • X. C. Tong
    • 2
  • Z. Q. Zou
    • 2
  • Y. M. Wu
    • 3
  • Y. C. Wu
    • 1
  • Y. W. Du
    • 2
    • 4
  1. 1.School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Huaian Engineering Research Center of Soft Magnetic Powder Cores and DevicesJiangsu Red Magnetic Materials IncorporationXuyiPeople’s Republic of China
  3. 3.Electric Power Science Research Institute of Jiangsu Electric Power CompanyNanjingPeople’s Republic of China
  4. 4.National Laboratory of Solid State Microstructure and Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations