A Study on the Wiedemann-Franz Law in a Granular s-Wave Superconductor, Given the Tunneling Between the Grains in Cooper Pair Fluctuation Propagator and Impurity Vertex

  • H. Salehi
  • A. Yousefvand
  • M. Zargar Shoushtari
Original Paper


The present study tries to investigate Wiedemann-Franz law near and far from the critical temperatures, given the tunneling between the grains in Cooper pair fluctuation propagator and impurity vertex. By means of Dyson’s equation, the Cooper pair fluctuation propagator, L(q kΩ μ ) and the Cooperon (impurity vertex), λ(q, k, ε 1, ε 2), are initially calculated in the presence of tunneling between the grains. Then, the three distinct contributions of density of states, Maki-Thompson, and Aslamazov-Larkin, are calculated in the frameworks of the Green’s functions formalism and the Kubo formula technique. The evaluation is conducted under the limited tunneling conductance between the grains. Findings show that although the tunneling is efficient near the critical temperature, it is not effective when it is far from the critical temperature Compared to that in high temperatures, moreover, the deviation from the Wiedemann-Franz law is much more evident in low temperatures.


Granular superconductor Dyson’s equation s-wave superconductor Fluctuation conductivity Cooperon Fluctuation propagator 


  1. 1.
    Ebner, C., Stroud, D.: Phys. Rev. B 31(1985), 165 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    Choi, J., Jose, J.V.: Phys. Rev. Let. 62, 320 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Beloborodov, I.S., Efetov, K.B.: Ann. Phys. (Leipzig) 8 7-9, 775–784 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Ussishkin, I.: Rev. B 68, 0245517 (2003)CrossRefGoogle Scholar
  5. 5.
    Simon, R.W., Dalrymple, B.J., Van Vechten, D., Fuller, W.W., Wolf, S.A.: (1962)Google Scholar
  6. 6.
    Ekinic, K.L., Valles, J.M., Jr.: Phys. Rev. Lett. 82, 1518 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Biagini, C., Ferone, R., Hekking, F.W.J., Tognetti, V.: Phys. Rev. B 72, 134510 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Skrzynski, B.S., Beloborodov, I.S., Efetov, K.B.: Phsy. Rev. B 65, 094516 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Gerber, A., Milner, A., Deutscher, G., Karpovsky, M., Gadkikh, A.: Phys. Rev. Let. 78, 4277 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Larkin, A., Varlamov, A.: Theory of fluctuations in superconductors. Clarendon Press, Oxford (2004)zbMATHGoogle Scholar
  11. 11.
    Belobrodov, I.S., Efetov, K.B., Larkin, A.I.: Phys, Rev. B 61, 9145 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Mahan, G.D.: Many-particle physics, 2nd edn. Plenum Press, NY (1990)Google Scholar
  13. 13.
    Anderson, P.W.: Lectures on the many-body problems, vol. 2. Academic, New York (1964)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • H. Salehi
    • 1
  • A. Yousefvand
    • 1
  • M. Zargar Shoushtari
    • 1
  1. 1.Department of Physics, Faculty of ScienceShahid Chamran University of AhvazAhvazIran

Personalised recommendations