Skip to main content

Enhancement of Kerr Signal in Co Thin Films Incorporating Ag Nanoparticles Surrounded by TiO2

Abstract

In this study, we demonstrate the effect of localized surface plasmon resonance (LSPR) on magneto-optical (MO) activity of Co thin films incorporating Ag nanoparticles (NPs) so that the Ag NPs were surrounded by TiO2 (Ag [TiO2]). The deposition of Co on glass substrates was performed using an oblique deposition technique, thereby obtaining a variable film thickness. Three samples of glass/Co, glass/Co/Ag NPs, and glass/Co/Ag [TiO2] were compared with each other in terms of Kerr signal intensity. Our results show that while all samples have an easy axis in the film plane, the corresponding Kerr signal is amplified in the glass/Co/Ag [TiO2] structure. A combination of SPR and light localization is the reasoning behind the amplification. These studies may open a new route in the research area of LSPR-based MO Kerr effect since the improved LSPR enhances MO properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Amendola, V., Pilot, R., Frasconi, M., Marago, O.M., Antonia Iati, M.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)

    ADS  Article  Google Scholar 

  2. Hamidi, S.M., Normohammadi, H., Tehranchi, M.M.: Contribution of Au nanoparticles to the longitudinal magneto-optical Kerr effect of Bragg reflector based magneto-plasmonic multilayers. Opt. Laser Technol. 49, 237–242 (2013)

    ADS  Article  Google Scholar 

  3. Mahmoodi, S., Moradi, M., Mohseni, S.M.: Optimization of magneto-optical Kerr effect in Cu/Fe/Cu nano-structure. J. Supercond. Novel Magn. 29, 1517–1523 (2016)

    Article  Google Scholar 

  4. Kravets, A.F., Borodinova, T.I., Kravets, V.G.: Strong plasmon enhancement of magneto-optical Kerr rotation in Co–AlO nano granular films coated with gold nanoparticles. J. Opt. Soc. Am. B 33, 302–307 (2016)

    ADS  Article  Google Scholar 

  5. Moradi, M., Ayareh, Z., Mahmoodi, S.: J. Magn. Magn. Mater. 444, 410–415 (2017)

    ADS  Article  Google Scholar 

  6. Mahmoodi, S., Moradi, M., Mohseni, S.M.: Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance. J. Magn. Magn. Mater. 420, 258–262 (2016)

    ADS  Article  Google Scholar 

  7. Tehranchi, M.M., Ghanaatshoar, M., Mohseni, S.M., Moradi, M.: Magnetoimpedance effect in surface pinned nanostructured Fe-based alloys. J. Non-Cryst. Solids 353, 896–898 (2007)

    ADS  Article  Google Scholar 

  8. Moradi, M., Mohseni, S.M., Mahmoodi, S., Rezvani, D., Ansari, N., Chung, S., Akerman, J.: Au/NiFe magneto plasmonics: large enhancement of magneto-optical Kerr effect for magnetic field sensors and memories. Electron. Mater. Lett. 11, 440–446 (2015)

    ADS  Article  Google Scholar 

  9. Melnikau, D., Govyadinov, A.A., Sanchez-Iglesias, A., Grzelczak, M., Liz-Marzan, L.M., Rakovich, Y.P.: Strong magneto-optical response of nonmagnetic organic materials coupled to plasmonic nanostructures. Nano Lett. 17, 1808–1813 (2017)

    ADS  Article  Google Scholar 

  10. Ghanaatshoar, M., Moradi, M., Tohidi, P.: Surface plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/ Co/Ag/SnO2 structure. Eur. Phys. J. Appl. Phys. 68, 10402 (2014)

    ADS  Article  Google Scholar 

  11. Ross, M.B., Bourgeois, M.R., Mirkin, C.A., Schatz, G.C.: Magneto-optical response of cobalt interacting with plasmonic nanoparticle superlattices. J. Phys. Chem. Lett. 7, 4732–4738 (2016)

    Article  Google Scholar 

  12. Chesnitskiy, A.V., Gayduk, A.E., Prinz, V.Y.: Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics 1–5. https://doi.org/10.1007/s11468-017-0584-3 (2017)

  13. Kamimura, S., Yamashita, S., Abe, S., Tsubota, T., Ohno, T.: Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Appl. Catal. B. Environ. 211, 11–17 (2017)

    Article  Google Scholar 

  14. Wang, L., Clavero, C., Huba, Z., Carroll, K.J., Carpenter, E.E., Gu, D., Lukaszew, R.A.: Plasmonics and enhanced magneto-optic in core–shell Co–Ag nanoparticles. Nano Lett. 11, 1237–1240 (2011)

    ADS  Article  Google Scholar 

  15. Hamidi, S.M., Oskuei, M.A.: Magneto-plasmonic effect in cobalt thin film incorporating core–shell Ag@Au nanoparticles. J. Supercond. Nov. Magn. 27, 1469–1472 (2014)

    Article  Google Scholar 

  16. Armelles, G., Cebollada, A., Garcia-Martin, A.: Magneto-optical properties of core–shell magneto-plasmonic Au–CoxFe3−xO4 Nanowires. Langmuir 28, 9127–9130 (2012)

    Article  Google Scholar 

  17. Jiang, S., Saito, M., Murahashi, M., Tamiya, E.: Pressure free nano imprinting lithography using ladder-type HSQ material for LSPR biosensor chip. Sens. Actuators B- Chem. 242, 47–55 (2017)

    Article  Google Scholar 

  18. Krishnamoorthy, S., Krishnan, S., Thoniyot, P., Low, H.Y.: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nano imprint and copolymer lithography. ACS Appl. Mater. Interfaces 3, 1033–1040 (2011)

    Article  Google Scholar 

  19. Pimpin, A., Srituravanich, W.: Review on micro-and nanolithography techniques and their applications. Eng. J. 16, 0125–8281 (2011)

    Google Scholar 

  20. Margueritat, J., Gonzalo, J., Afonso, C.N., Bachelier, G., Mlayah, A., Laarakker, A.S., Murray, D.B., Saviot, L.: From silver nanolentils to nanocolumns: surface plasmon–polaritons and confined acoustic Vibrations. Appl. Phys. A 89, 369–372 (2007)

    ADS  Article  Google Scholar 

  21. Sendova, M., Jimenez, J.A.: Plasmonic coupling in silver nano composite glasses. J. Phys. Chem. C 116, 17764–17772 (2012)

    Article  Google Scholar 

  22. Papagiannouli, I., Aloukos, P., Rioux, D., Meunier, M., Couris, S.: Effect of the composition on the nonlinear optical response of AuxAg1−x nano-alloys. J. Phys. Chem. C 119, 6861–6872 (2015)

    Article  Google Scholar 

  23. Dragoman, M., Dragoman, D.: Plasmonics: applications to nanoscale terahertz and optical devices. Prog. Quantum Electron. 32, 1–41 (2008)

    ADS  Article  Google Scholar 

  24. Fu, C.C., Chien, W.Y., Lee, L.P.: Nanoplasmonic biophotonics. In: Understanding Biophotonics: Fundamentals, Advances, and Applications, pp. 385–439. Pan Stanford (2015)

  25. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Am. Chem. Soc. 107, 668–677 (2003)

    Google Scholar 

  26. Gonzalez-Diaz, J.B., Garcia-Martin, A., Garcia-Martin, J.M., Cebollada, A., Armelles, G., Sepulveda, B., Alaverdyan, Y., Kall, M.: Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. J. Opt. Soc. Am. 4, 202–205 (2008)

    Google Scholar 

  27. Briche, S., Tebby, Z., Riassetto, D., Messaoud, M., Gamet, E., Pernot, E., Roussel, H., Dellea, O., Jourlin, Y., Langlet, M.: New insights in photo-patterned sol–gel-derived TiO2 films. J. Mater. Sci. 46, 1474–1486 (2011)

    ADS  Article  Google Scholar 

  28. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B. Condens. Matter 6, 4370–4379 (1972)

    ADS  Article  Google Scholar 

  29. Devore, J.R.: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Moradi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmailzadeh, B., Moradi, M. Enhancement of Kerr Signal in Co Thin Films Incorporating Ag Nanoparticles Surrounded by TiO2 . J Supercond Nov Magn 31, 1483–1488 (2018). https://doi.org/10.1007/s10948-017-4345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4345-5

Keywords

  • Magneto-optical Kerr effect
  • Ag nanoparticles
  • TiO2
  • Sol-gel method
  • Localized surface plasmon resonance