Advertisement

Enhancement of Kerr Signal in Co Thin Films Incorporating Ag Nanoparticles Surrounded by TiO2

  • Behnam Esmailzadeh
  • Mehrdad Moradi
Original Paper
  • 112 Downloads

Abstract

In this study, we demonstrate the effect of localized surface plasmon resonance (LSPR) on magneto-optical (MO) activity of Co thin films incorporating Ag nanoparticles (NPs) so that the Ag NPs were surrounded by TiO2 (Ag [TiO2]). The deposition of Co on glass substrates was performed using an oblique deposition technique, thereby obtaining a variable film thickness. Three samples of glass/Co, glass/Co/Ag NPs, and glass/Co/Ag [TiO2] were compared with each other in terms of Kerr signal intensity. Our results show that while all samples have an easy axis in the film plane, the corresponding Kerr signal is amplified in the glass/Co/Ag [TiO2] structure. A combination of SPR and light localization is the reasoning behind the amplification. These studies may open a new route in the research area of LSPR-based MO Kerr effect since the improved LSPR enhances MO properties.

Keywords

Magneto-optical Kerr effect Ag nanoparticles TiO2 Sol-gel method Localized surface plasmon resonance 

References

  1. 1.
    Amendola, V., Pilot, R., Frasconi, M., Marago, O.M., Antonia Iati, M.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Hamidi, S.M., Normohammadi, H., Tehranchi, M.M.: Contribution of Au nanoparticles to the longitudinal magneto-optical Kerr effect of Bragg reflector based magneto-plasmonic multilayers. Opt. Laser Technol. 49, 237–242 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Mahmoodi, S., Moradi, M., Mohseni, S.M.: Optimization of magneto-optical Kerr effect in Cu/Fe/Cu nano-structure. J. Supercond. Novel Magn. 29, 1517–1523 (2016)CrossRefGoogle Scholar
  4. 4.
    Kravets, A.F., Borodinova, T.I., Kravets, V.G.: Strong plasmon enhancement of magneto-optical Kerr rotation in Co–AlO nano granular films coated with gold nanoparticles. J. Opt. Soc. Am. B 33, 302–307 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Moradi, M., Ayareh, Z., Mahmoodi, S.: J. Magn. Magn. Mater. 444, 410–415 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Mahmoodi, S., Moradi, M., Mohseni, S.M.: Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance. J. Magn. Magn. Mater. 420, 258–262 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Tehranchi, M.M., Ghanaatshoar, M., Mohseni, S.M., Moradi, M.: Magnetoimpedance effect in surface pinned nanostructured Fe-based alloys. J. Non-Cryst. Solids 353, 896–898 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Moradi, M., Mohseni, S.M., Mahmoodi, S., Rezvani, D., Ansari, N., Chung, S., Akerman, J.: Au/NiFe magneto plasmonics: large enhancement of magneto-optical Kerr effect for magnetic field sensors and memories. Electron. Mater. Lett. 11, 440–446 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Melnikau, D., Govyadinov, A.A., Sanchez-Iglesias, A., Grzelczak, M., Liz-Marzan, L.M., Rakovich, Y.P.: Strong magneto-optical response of nonmagnetic organic materials coupled to plasmonic nanostructures. Nano Lett. 17, 1808–1813 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Ghanaatshoar, M., Moradi, M., Tohidi, P.: Surface plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/ Co/Ag/SnO2 structure. Eur. Phys. J. Appl. Phys. 68, 10402 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Ross, M.B., Bourgeois, M.R., Mirkin, C.A., Schatz, G.C.: Magneto-optical response of cobalt interacting with plasmonic nanoparticle superlattices. J. Phys. Chem. Lett. 7, 4732–4738 (2016)CrossRefGoogle Scholar
  12. 12.
    Chesnitskiy, A.V., Gayduk, A.E., Prinz, V.Y.: Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics 1–5.  https://doi.org/10.1007/s11468-017-0584-3 (2017)
  13. 13.
    Kamimura, S., Yamashita, S., Abe, S., Tsubota, T., Ohno, T.: Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Appl. Catal. B. Environ. 211, 11–17 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, L., Clavero, C., Huba, Z., Carroll, K.J., Carpenter, E.E., Gu, D., Lukaszew, R.A.: Plasmonics and enhanced magneto-optic in core–shell Co–Ag nanoparticles. Nano Lett. 11, 1237–1240 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Hamidi, S.M., Oskuei, M.A.: Magneto-plasmonic effect in cobalt thin film incorporating core–shell Ag@Au nanoparticles. J. Supercond. Nov. Magn. 27, 1469–1472 (2014)CrossRefGoogle Scholar
  16. 16.
    Armelles, G., Cebollada, A., Garcia-Martin, A.: Magneto-optical properties of core–shell magneto-plasmonic Au–CoxFe3−xO4 Nanowires. Langmuir 28, 9127–9130 (2012)CrossRefGoogle Scholar
  17. 17.
    Jiang, S., Saito, M., Murahashi, M., Tamiya, E.: Pressure free nano imprinting lithography using ladder-type HSQ material for LSPR biosensor chip. Sens. Actuators B- Chem. 242, 47–55 (2017)CrossRefGoogle Scholar
  18. 18.
    Krishnamoorthy, S., Krishnan, S., Thoniyot, P., Low, H.Y.: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nano imprint and copolymer lithography. ACS Appl. Mater. Interfaces 3, 1033–1040 (2011)CrossRefGoogle Scholar
  19. 19.
    Pimpin, A., Srituravanich, W.: Review on micro-and nanolithography techniques and their applications. Eng. J. 16, 0125–8281 (2011)Google Scholar
  20. 20.
    Margueritat, J., Gonzalo, J., Afonso, C.N., Bachelier, G., Mlayah, A., Laarakker, A.S., Murray, D.B., Saviot, L.: From silver nanolentils to nanocolumns: surface plasmon–polaritons and confined acoustic Vibrations. Appl. Phys. A 89, 369–372 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Sendova, M., Jimenez, J.A.: Plasmonic coupling in silver nano composite glasses. J. Phys. Chem. C 116, 17764–17772 (2012)CrossRefGoogle Scholar
  22. 22.
    Papagiannouli, I., Aloukos, P., Rioux, D., Meunier, M., Couris, S.: Effect of the composition on the nonlinear optical response of AuxAg1−x nano-alloys. J. Phys. Chem. C 119, 6861–6872 (2015)CrossRefGoogle Scholar
  23. 23.
    Dragoman, M., Dragoman, D.: Plasmonics: applications to nanoscale terahertz and optical devices. Prog. Quantum Electron. 32, 1–41 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Fu, C.C., Chien, W.Y., Lee, L.P.: Nanoplasmonic biophotonics. In: Understanding Biophotonics: Fundamentals, Advances, and Applications, pp. 385–439. Pan Stanford (2015)Google Scholar
  25. 25.
    Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Am. Chem. Soc. 107, 668–677 (2003)Google Scholar
  26. 26.
    Gonzalez-Diaz, J.B., Garcia-Martin, A., Garcia-Martin, J.M., Cebollada, A., Armelles, G., Sepulveda, B., Alaverdyan, Y., Kall, M.: Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. J. Opt. Soc. Am. 4, 202–205 (2008)Google Scholar
  27. 27.
    Briche, S., Tebby, Z., Riassetto, D., Messaoud, M., Gamet, E., Pernot, E., Roussel, H., Dellea, O., Jourlin, Y., Langlet, M.: New insights in photo-patterned sol–gel-derived TiO2 films. J. Mater. Sci. 46, 1474–1486 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B. Condens. Matter 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    Devore, J.R.: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–419 (1951)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran

Personalised recommendations