Advertisement

Transverse Tunable Magneto-Plasmonic Kerr Effect in Large Area Micro-Patterned Au/Co/Au Structures

  • S. M. Hamidi
  • S. Behjati
  • F. Sohrabi
Original Paper

Abstract

By sputtering the sequence of Au/Co/Au layers on ordered microspheres, two-dimensional plasmonic arrays with sufficient angular tunability and enhanced transverse magneto-plasmonic Kerr effect are fabricated. For confirmation of enhanced optical properties, we simulated the fabricated sample using the finite difference time domain method. In order to investigate the effect of rotation speed on the anisotropy of the samples and their magneto-plasmonic responses, these patterned structures are fabricated under dissimilar holder rotation speeds for inner cobalt layer deposition (i.e., Au (10 rpm)/Co (30 rpm)/Au (10 rpm) and Au (10 rpm)/Co (10 rpm)/Au (10 rpm) structures). Our results show that the transverse magneto-plasmonic Kerr effect measurements can provide unique and useful information about the structure and quality of the fabricated samples. In addition, the ability of the samples as a tunable magnetic field sensor has been investigated.

Keywords

Patterned microstructure Transverse magneto-plasmonic Kerr effect Tunable optical properties Sensor 

Notes

Acknowledgments

This work is supported completely by Iran National Science Foundation under grant number 93047476. Also, the authors are grateful to the central laboratory of Shahid Beheshti University for their help in scanning electron microscopy imaging.

References

  1. 1.
    Chen, L., Gao, J., Xia, W., Zhang, Sh., Tang, Sh., Zhang, W., Li, D., Wu, X., Du, Y.: Tunable Fano resonance and magneto-optical response in magnetoplasmonic structure fabricated by pure ferromagnetic metals. Phys. Rev. B 93, 214411 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Kataja, M., Pourjamal, S., Maccaferri, N., Vavassori, P., Hakala, T.K., Huttunen, M.J., Törmä, P., Dijken, S.v.: Hybrid plasmonic lattices with tunable magneto-optical activity. Opt. Express 24, 3652 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Hamidi, S.M., Oskuei, M.A.: Magneto-plasmonic effect in cobalt thin film incorporatingcore–shell Ag@Au nanoparticles. J. Supercond. Novel Magn. 27, 1469 (2014)CrossRefGoogle Scholar
  4. 4.
    Jain, P.K., Xiao, Y., Walsworth, R., Cohen, A.E.: Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals, Nano Lett. (2009).  https://doi.org/10.1021/nl900007k
  5. 5.
    Armelles, G., Cebollada, Alfonso, García-Martín, A., González, M.: Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1(1), 10 (2013)CrossRefGoogle Scholar
  6. 6.
    Maksymov, I.S.: Magneto-plasmonics and resonant interaction of light with dynamic magnetisation in metallic and all-magneto-dielectric nanostructures. Nanomaterials 5, 577–613 (2015)CrossRefGoogle Scholar
  7. 7.
    Gladczuk, L., Aleshkevych, P., Lasek, K., Przyslupski, P.: Magnetic anisotropy of Au/Co/Au/ MgO heterostructures: role of the gold at Co/MgO interface. J. Appl. Phys. 116, 233909 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Quispe-Marcatoma, J., Tarazona, H., Pendry, B., De Sousa, M.A., Carvalho, M., Landauro, C.V., Pelegrini, F., BaggioSaitovitch, E.: Spin reorientation transition in Co/Au multilayers. Thin Solid Films 568, 117 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Fujita, N., Inaba, N., Kirino, F., Igarashi, S., Koike, K., Kato, H.: Damping constant of Co/Pt multilayer thin film media. J. Magn. Magn. Mater. 320, 3019 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Hamidi, S.M., Mosaeii, B., Afsharnia, M., Aftabi, A., Najafi, M.: Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor. J. Magn. Magn. Mater. 417, 413 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Arnalds, U.B., Papaioannou, E. Th., Hase, T.P.A., Raanaei, H., Andersson, G., Charlton, T.R., Langridge, S., Hjörvarsson, B.: Phys. Rev. B 82, 144434 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Lenk, B., Ulrichs, H., Garbs, F., Münzenberg, M.: The building blocks of magnonics. Phys. Rep. 507, 107 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    den Broeder, F.J.A., Kuiper, M.D., Van de Mosselar, A.P., Hoving, W.: Phys. Rev. Lett. 60, 2769 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Stupakiewicz, A., Kurant, Z., Maziewski, A., Baczewski, L.T., Maneikis, A., Wawro, A.: Magnetic anisotropy modification in ultrathin Co(0001) film epitaxially grown on Mo (110). J. Magn. Magn. Mater. 290, 242 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Garcia-Vidal, F.J., Martin-Moreno, L., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Modern Phys. 82(1), 729–787 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Ghaemi, H.F., Thio, T., Grupp, D.E.: Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58(11), 6779–6782 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Maksymov, I.: Magneto-plasmonic nanoantennas: basics and applications. Rev. Phys. 1, 36–51 (2016)CrossRefGoogle Scholar
  19. 19.
    Du, G.X., Mori, T., Suzuki, M., Saito, S., Fukuda, H., Takashi, M.: Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array. Appl. Phys. Lett. 96, 081915 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Ctistis, G., Papaioannou, E., Patoka, P., Gutek, J., Fumagalli, P., Giersig, M.: Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Lett. 9(1), 1 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Hamidi, S.M., Normhammadi, H., Tehranchi, M.M.: Contribution of Au nanoparticles to longitudinal magneto-optical Kerr effect of Bragg reflector based magneto-plasmonic multilayers. J. Opt. Laser Technol. 49, 237–242 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Fredrikson, H., Alaverdyan, Y., Dmitriem, A., Langhammer, C., Sutherland, D., Zuch, M., Kasemo, B.: Hole mask colloidal lithography. Adv. Mater 19(23), 4297 (2007)CrossRefGoogle Scholar
  23. 23.
    Hamidi, S.M., Mosleh, M., Rajab, N., BaradaranGhasemi, A.H.: Enhanced magneto-plasmonic activity of cobalt layer perforated by Au nanostructures. J. Supercond. Novel Magn. 29, 771 (2016)CrossRefGoogle Scholar
  24. 24.
    Luo, Ch.-L., Yan, W.-G., Zhao, J., Li, Z.-B., GuoTian, J.: Surface plasmonic properties and fabrication of large area disordered and binary ordered Au particle arrays. Superlattice. Microst. 85, 92 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Erokhin, S., Boriskina, Yu., Vinogradovb, A., Inoue, M., Kobayashi, D., Fedyanin, A., Gan’shina, E., Kochneva, M., Granovsky, A.: Transverse Kerr effect in one-dimensional magnetophotonic crystals: experiment and theory. J. Magn. Magn. Mater. 300, e257 (2006)CrossRefGoogle Scholar
  26. 26.
    Hamidi, S.M., Tehranchi, M.M., Chiniforooshan, Y.: The magneto-optical Co-based amorphous thin film as a magnetic field sensor. J. Optoelectron. Adv. Mater. 12, 1135 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Magneto-plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran

Personalised recommendations