Skip to main content

Advertisement

Log in

Integration of a SMES–Battery-Based Hybrid Energy Storage System into Microgrids

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The future trends of the industry require major renovations in the infrastructure of transmission, distribution, and storing of generated energy. With the increased use of renewable energy across the globe, energy storage (ES) systems have started to play a prominent role in shaping the future of the ES market. However, because of the uneven distribution of the renewable energy throughout the world, more emphasis must be made to the integration of power grids with the ES devices to utilize the excess power more effectively. In this paper, a study is performed regarding the integration of a hybrid system, consisting of a lithium-ion battery (LIB) and superconducting magnetic energy storage (SMES), into an interconnected microgrid operation. The structure of a microgrid is explained by analyzing the selected battery (LIB) and voltage source converter (VSC)-based SMES unit via MATLAB & Simulink. Finally, the voltage waveforms are compared and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tan, X., Li, Q., Wang, H.: Advances and trends of energy storage technology in micro-grid. Electr. Power Energy Syst. 44, 179 (2007)

    Article  Google Scholar 

  2. Ernst, B., Wan, Y., Kirby, B.: Short-term power fluctuation of wind turbines: looking at data from the German 250-MW measurement program from the ancillary services viewpoint. In: Windpower ’99 Conference, American Wind Energy Association, Washington, DC (1999)

  3. Ibrahim, H., Ilinca, A., Perron, J.: Energy storage systems—characteristics and comparisons. Renew. Sust. Energ. Rev. 12, 1221 (2008)

    Article  Google Scholar 

  4. Hall, P.J., Bain, E.J.: Energy-storage technologies and electricity generation. Energy Policy 36, 4352 (2008)

    Article  Google Scholar 

  5. Hadjipaschalis, I., Poullikkas, A., Efthimiou, V.: Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energ. Rev. 13, 1513 (2009)

    Article  Google Scholar 

  6. Vazquez, S., Lukic, S.M., Galvan, E., et al.: Energy storage systems for transport and grid applications. IEEE Trans. Ind. Electron. 57(12), 3881 (2010)

    Article  Google Scholar 

  7. Chen, S.X., Gooi, H.B., Wang, M.Q.: Sizing of energy storage for microgrids. IEEE Trans. Smart Grid. 3(1), 142 (2012)

    Article  Google Scholar 

  8. Boicea, V. A.: Energy storage technologies: the past and the present. Proc. IEEE 102(11), 1777 (2014)

    Article  Google Scholar 

  9. Roberts, B.: Computing grid power. Power Energ. Mag. 7(4), 32 (2009)

    Article  Google Scholar 

  10. Lopes, J.A.P., Polenz, S.A., Moreira, C.L., et al.: Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles. Electr. Power Syst. Res. 80, 898 (2010)

    Article  Google Scholar 

  11. Serban, E., Serban, H.: A control strategy for a distributed power generation micro-grid application with voltage and current-controlled source converter. IEEE Trans. Power Electron. 25(12), 298 (2010)

    Article  Google Scholar 

  12. Krieger, E., Cannarella, J., Arnold, C.B.: A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60, 492 (2013)

    Article  Google Scholar 

  13. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854 (2012)

    Article  Google Scholar 

  14. Svoboda, V., Wenzl, H., Kaiser, R., Jossen, A., Baring-Gould, I., Manwell, J., et al.: Operating conditions of batteries in off-grid renewable energy systems. Sol. Energy 81(11), 1409 (2007)

    Article  ADS  Google Scholar 

  15. Bhattacharyya, S.C.: Review of alternative methodologies for analysing off-grid electricity supply. Renew. Sust. Energ. Rev. 16, 677 (2012)

    Article  Google Scholar 

  16. Li, J., Gee, A.M., Zhang, M., et al.: Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model. Energy 86, 175 (2015)

    Article  Google Scholar 

  17. Manwell, J.F., McGowan, J.G., Abdulwahid, U., Wu, K.: Improvements to the Hybrid2 battery model. In: American Wind Energy Association Windpower 2005 Conference. American Wind Energy Association Colorado (2005)

  18. Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J. M., Domínguez-Navarro, J.A., Ramírez-Rosado, I.J., Lujano, J., et al.: Multiobjective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage. Appl. Energy 88(11), 4033 (2011)

    Article  Google Scholar 

  19. Guan, T., Zuo, P., Sun, S., Du, C., Zhang, L., Cui, Y., et al.: Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. J. Power Sources 268, 816 (2014)

    Article  ADS  Google Scholar 

  20. Molina, M.G.: Distributed energy storage systems for applications in future smart grids. In: Transmission and Distribution: Latin America Conference and Exposition (T&D-LA). Sixth IEEE/PES IEEE (2012)

  21. Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustainable Energy 1(1), 38 (2010)

    Article  Google Scholar 

  22. Molina, M.G., Mercado, P.E., Watanabe, E.H.: Improved superconducting magnetic energy storage (SMES) controller for high power utility applications. IEEE Trans. Energy Convers. 26(2), 444 (2011)

    Article  Google Scholar 

  23. Ise, T., Kita, M., Taguchi, A.: A hybrid energy storage with a SMES and secondary battery. IEEE Trans. Appl. Supercond. 15(2), 1915 (2005)

    Article  Google Scholar 

  24. Trevisani, L., Morandi, A., Negrini, F., Ribani, P.L., Fabbri, M.: Cryogenic fuel-cooled SMES for hybrid vehicle application. IEEE Trans. Appl. Supercond. 19(3), 2008 (2009)

    Article  ADS  Google Scholar 

  25. Li, J., Zhang, M., Yang, Q., Zhang, Z., Yuan, W.: SMES/battery hybrid energy storage system for electric buses. IEEE Trans. Appl. Supercond. 26(4), 5700305 (2016)

    Google Scholar 

  26. Zhou, H., Bhattacharya, T., Tran, D., et al.: Composite energy storage system involving battery and ultracapacitor with dynamic energy management in micro-grid applications. IEEE Trans. Power Electron. 26(3), 923 (2011)

    Article  Google Scholar 

  27. Khaligh, A., Li, Z.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans. Veh. Technol. 59(6), 2806 (2010)

    Article  Google Scholar 

  28. Li, W., Joos, G., Belanger, J.: Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system. IEEE Trans. Ind. Electron. 57(4), 1137 (2010)

    Article  Google Scholar 

  29. Li, J., Xiong, R., Yang, Q., Liang, F., Zhang, M., Yuan, W.: Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Appl. Energy 201, 257 (2017)

    Article  Google Scholar 

  30. Li, J., Yang, Q., Robinson, F., Liang, F., Yuan, W.: Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system. Energy 118, 1110 (2017)

    Article  Google Scholar 

  31. Li, J., Wang, X., Zhang, Z., LeBlod, S., Yang, Q., Zhang, M.: Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems. Appl. Energy 187, 169 (2017)

    Article  Google Scholar 

  32. Tixador, P.: Superconducting magnetic energy storage: status and perspective. In: IEEE/CSC&ESAS European Superconductivity News Forum, p 3 (2008)

  33. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002 (2006)

    Article  Google Scholar 

  34. Nagaya, S., Kashima, N., Minami, M., et al.: Study on high temperature superconducting magnetic bearing for 10 kWh Flywheel energy storage system. IEEE Trans. Appl. Supercond. 11(1), 1649 (2001)

    Article  Google Scholar 

  35. Crompton, T.P.J.: Battery reference book. Newnes (2000)

  36. Inthamoussou, F.A., Pegueroles-Queralt, J., Bianchi, F.D.: Control of a supercapacitor energy storage system for micro-grid applications. IEEE Trans. Energy Convers. 28(3), 690 (2013)

    Article  Google Scholar 

  37. Kustom, R.L., Skiles, J.J., Wang, J., et al.: Research on power conditioning systems for superconductive magnetic energy storage (SMES). IEEE Trans. Magn. 27(2), 2320 (1991)

    Article  ADS  Google Scholar 

  38. Nguyen, T.-T., Yoo, H.-J., Kim, H.-M.: A flywheel energy storage system based on a doubly fed induction machine and battery for micro-grid control. Energies 8, 5074 (2015)

    Article  Google Scholar 

  39. Zhao, P., Dai, Y., Wang, J.: Design and thermodynamic analysis of a hybrid energy storage system based on a-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application. Energy 70, 674 (2014)

    Article  Google Scholar 

  40. Nielsen, K.E., Molinas, M.: Superconducting magnetic energy storage (SMES) in power systems with renewable energy sources. In: IEEE International Symposium on Industrial Electronics, p 2487 (2010)

  41. Kroposki, B., Basso, T., DeBlasio, R.: Micro-grid standards and technologies. IEEE Power & Energy Society General Meeting 1(11), 1319 (2008)

    Google Scholar 

  42. Redfern, M.A., Usta, O., Fielding, G.: Protection against loss of utility grid supply for a dispersed storage and generation unit. IEEE Trans. Power Delivery. 8(3), 948 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Cansiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cansiz, A., Faydaci, C., Qureshi, M.T. et al. Integration of a SMES–Battery-Based Hybrid Energy Storage System into Microgrids. J Supercond Nov Magn 31, 1449–1457 (2018). https://doi.org/10.1007/s10948-017-4338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4338-4

Keywords

Navigation