Advertisement

Integration of a SMES–Battery-Based Hybrid Energy Storage System into Microgrids

  • Ahmet Cansiz
  • Cagri Faydaci
  • M. Talha Qureshi
  • Omer Usta
  • Daniel T. McGuiness
Original Paper

Abstract

The future trends of the industry require major renovations in the infrastructure of transmission, distribution, and storing of generated energy. With the increased use of renewable energy across the globe, energy storage (ES) systems have started to play a prominent role in shaping the future of the ES market. However, because of the uneven distribution of the renewable energy throughout the world, more emphasis must be made to the integration of power grids with the ES devices to utilize the excess power more effectively. In this paper, a study is performed regarding the integration of a hybrid system, consisting of a lithium-ion battery (LIB) and superconducting magnetic energy storage (SMES), into an interconnected microgrid operation. The structure of a microgrid is explained by analyzing the selected battery (LIB) and voltage source converter (VSC)-based SMES unit via MATLAB & Simulink. Finally, the voltage waveforms are compared and discussed in detail.

Keywords

Battery Superconducting magnetic energy storage Microgrid 

References

  1. 1.
    Tan, X., Li, Q., Wang, H.: Advances and trends of energy storage technology in micro-grid. Electr. Power Energy Syst. 44, 179 (2007)CrossRefGoogle Scholar
  2. 2.
    Ernst, B., Wan, Y., Kirby, B.: Short-term power fluctuation of wind turbines: looking at data from the German 250-MW measurement program from the ancillary services viewpoint. In: Windpower ’99 Conference, American Wind Energy Association, Washington, DC (1999)Google Scholar
  3. 3.
    Ibrahim, H., Ilinca, A., Perron, J.: Energy storage systems—characteristics and comparisons. Renew. Sust. Energ. Rev. 12, 1221 (2008)CrossRefGoogle Scholar
  4. 4.
    Hall, P.J., Bain, E.J.: Energy-storage technologies and electricity generation. Energy Policy 36, 4352 (2008)CrossRefGoogle Scholar
  5. 5.
    Hadjipaschalis, I., Poullikkas, A., Efthimiou, V.: Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energ. Rev. 13, 1513 (2009)CrossRefGoogle Scholar
  6. 6.
    Vazquez, S., Lukic, S.M., Galvan, E., et al.: Energy storage systems for transport and grid applications. IEEE Trans. Ind. Electron. 57(12), 3881 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, S.X., Gooi, H.B., Wang, M.Q.: Sizing of energy storage for microgrids. IEEE Trans. Smart Grid. 3(1), 142 (2012)CrossRefGoogle Scholar
  8. 8.
    Boicea, V. A.: Energy storage technologies: the past and the present. Proc. IEEE 102(11), 1777 (2014)CrossRefGoogle Scholar
  9. 9.
    Roberts, B.: Computing grid power. Power Energ. Mag. 7(4), 32 (2009)CrossRefGoogle Scholar
  10. 10.
    Lopes, J.A.P., Polenz, S.A., Moreira, C.L., et al.: Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles. Electr. Power Syst. Res. 80, 898 (2010)CrossRefGoogle Scholar
  11. 11.
    Serban, E., Serban, H.: A control strategy for a distributed power generation micro-grid application with voltage and current-controlled source converter. IEEE Trans. Power Electron. 25(12), 298 (2010)CrossRefGoogle Scholar
  12. 12.
    Krieger, E., Cannarella, J., Arnold, C.B.: A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60, 492 (2013)CrossRefGoogle Scholar
  13. 13.
    Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854 (2012)CrossRefGoogle Scholar
  14. 14.
    Svoboda, V., Wenzl, H., Kaiser, R., Jossen, A., Baring-Gould, I., Manwell, J., et al.: Operating conditions of batteries in off-grid renewable energy systems. Sol. Energy 81(11), 1409 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Bhattacharyya, S.C.: Review of alternative methodologies for analysing off-grid electricity supply. Renew. Sust. Energ. Rev. 16, 677 (2012)CrossRefGoogle Scholar
  16. 16.
    Li, J., Gee, A.M., Zhang, M., et al.: Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model. Energy 86, 175 (2015)CrossRefGoogle Scholar
  17. 17.
    Manwell, J.F., McGowan, J.G., Abdulwahid, U., Wu, K.: Improvements to the Hybrid2 battery model. In: American Wind Energy Association Windpower 2005 Conference. American Wind Energy Association Colorado (2005)Google Scholar
  18. 18.
    Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J. M., Domínguez-Navarro, J.A., Ramírez-Rosado, I.J., Lujano, J., et al.: Multiobjective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage. Appl. Energy 88(11), 4033 (2011)CrossRefGoogle Scholar
  19. 19.
    Guan, T., Zuo, P., Sun, S., Du, C., Zhang, L., Cui, Y., et al.: Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. J. Power Sources 268, 816 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Molina, M.G.: Distributed energy storage systems for applications in future smart grids. In: Transmission and Distribution: Latin America Conference and Exposition (T&D-LA). Sixth IEEE/PES IEEE (2012)Google Scholar
  21. 21.
    Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustainable Energy 1(1), 38 (2010)CrossRefGoogle Scholar
  22. 22.
    Molina, M.G., Mercado, P.E., Watanabe, E.H.: Improved superconducting magnetic energy storage (SMES) controller for high power utility applications. IEEE Trans. Energy Convers. 26(2), 444 (2011)CrossRefGoogle Scholar
  23. 23.
    Ise, T., Kita, M., Taguchi, A.: A hybrid energy storage with a SMES and secondary battery. IEEE Trans. Appl. Supercond. 15(2), 1915 (2005)CrossRefGoogle Scholar
  24. 24.
    Trevisani, L., Morandi, A., Negrini, F., Ribani, P.L., Fabbri, M.: Cryogenic fuel-cooled SMES for hybrid vehicle application. IEEE Trans. Appl. Supercond. 19(3), 2008 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Li, J., Zhang, M., Yang, Q., Zhang, Z., Yuan, W.: SMES/battery hybrid energy storage system for electric buses. IEEE Trans. Appl. Supercond. 26(4), 5700305 (2016)Google Scholar
  26. 26.
    Zhou, H., Bhattacharya, T., Tran, D., et al.: Composite energy storage system involving battery and ultracapacitor with dynamic energy management in micro-grid applications. IEEE Trans. Power Electron. 26(3), 923 (2011)CrossRefGoogle Scholar
  27. 27.
    Khaligh, A., Li, Z.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans. Veh. Technol. 59(6), 2806 (2010)CrossRefGoogle Scholar
  28. 28.
    Li, W., Joos, G., Belanger, J.: Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system. IEEE Trans. Ind. Electron. 57(4), 1137 (2010)CrossRefGoogle Scholar
  29. 29.
    Li, J., Xiong, R., Yang, Q., Liang, F., Zhang, M., Yuan, W.: Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Appl. Energy 201, 257 (2017)CrossRefGoogle Scholar
  30. 30.
    Li, J., Yang, Q., Robinson, F., Liang, F., Yuan, W.: Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system. Energy 118, 1110 (2017)CrossRefGoogle Scholar
  31. 31.
    Li, J., Wang, X., Zhang, Z., LeBlod, S., Yang, Q., Zhang, M.: Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems. Appl. Energy 187, 169 (2017)CrossRefGoogle Scholar
  32. 32.
    Tixador, P.: Superconducting magnetic energy storage: status and perspective. In: IEEE/CSC&ESAS European Superconductivity News Forum, p 3 (2008)Google Scholar
  33. 33.
    Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002 (2006)CrossRefGoogle Scholar
  34. 34.
    Nagaya, S., Kashima, N., Minami, M., et al.: Study on high temperature superconducting magnetic bearing for 10 kWh Flywheel energy storage system. IEEE Trans. Appl. Supercond. 11(1), 1649 (2001)CrossRefGoogle Scholar
  35. 35.
    Crompton, T.P.J.: Battery reference book. Newnes (2000)Google Scholar
  36. 36.
    Inthamoussou, F.A., Pegueroles-Queralt, J., Bianchi, F.D.: Control of a supercapacitor energy storage system for micro-grid applications. IEEE Trans. Energy Convers. 28(3), 690 (2013)CrossRefGoogle Scholar
  37. 37.
    Kustom, R.L., Skiles, J.J., Wang, J., et al.: Research on power conditioning systems for superconductive magnetic energy storage (SMES). IEEE Trans. Magn. 27(2), 2320 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    Nguyen, T.-T., Yoo, H.-J., Kim, H.-M.: A flywheel energy storage system based on a doubly fed induction machine and battery for micro-grid control. Energies 8, 5074 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhao, P., Dai, Y., Wang, J.: Design and thermodynamic analysis of a hybrid energy storage system based on a-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application. Energy 70, 674 (2014)CrossRefGoogle Scholar
  40. 40.
    Nielsen, K.E., Molinas, M.: Superconducting magnetic energy storage (SMES) in power systems with renewable energy sources. In: IEEE International Symposium on Industrial Electronics, p 2487 (2010)Google Scholar
  41. 41.
    Kroposki, B., Basso, T., DeBlasio, R.: Micro-grid standards and technologies. IEEE Power & Energy Society General Meeting 1(11), 1319 (2008)Google Scholar
  42. 42.
    Redfern, M.A., Usta, O., Fielding, G.: Protection against loss of utility grid supply for a dispersed storage and generation unit. IEEE Trans. Power Delivery. 8(3), 948 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey
  2. 2.Department of Electrical Engineering & ElectronicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations