Monofilamentary In Situ Fe/MgB2 Superconducting Wires Fabricated by Pellet-in-Tube Method

  • Fırat KaraboğaEmail author
  • Hakan Yetiş
  • Mustafa Akdoğan
  • İbrahim Belenli
Original Paper


Thin monofilamentary Fe/MgB2 superconducting wires without barriers are investigated by means of electrical transport measurements and surface and structural analysis methods. Small diameter wires are fabricated by pellet-in-tube method (PeIT) to obtain a high uniform initial filling density and heat treated as a function of various sintering temperatures and times. The results are discussed in terms of the grain connectivity, Fe2B phase formation, and the relation between wire diameter and sintering conditions. We suggest that PeIT has a crucial importance to achieve homogeneous initial filling density, which leads to the fabrication of uniform long-length MgB2 wires.


MgB2 wires Pellet in tube Fe2B formation Sintering condition 



This work is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (grant number 113F080) and partly by the Abant Izzet Baysal University, Department of Scientific Research Projects under the contract 2017.03.02.1126.


  1. 1.
    Flukiger, R.: MgB2 Superconducting Wires: Basics and Applications. World Scientific, UK (2016)CrossRefGoogle Scholar
  2. 2.
    Parizh, M., Lvovsky, Y., Sumption, M.: Conductors for commercial MRI magnets beyond NbTi requirements and challanges. Supercond. Sci. Technol. 30, 014007 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Kim, J.H., Zhou, S., Hossain, M.S.A., Pan, A.V., Dou, S.X.: Carbohydrate doping to enhance electromagnetic properties of MgB2 superconductors. Appl. Phys. Lett. 89, 142505 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Zeng, R., Lu, L., Wang, J.L., Horvat, J., Li, W.X., Shi, D.Q., Dou, S.X., Tomsic, M., Rindfleisch, M.: Significant improvement in the critical current density of in situ MgB2 by excess Mg addition. Supercond. Sci. Technol. 20, L43 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Hur, J., Togano, K., Matsumoto, A., Kumakura, H., Wada, H., Kimura, K.: Fabrication of high-performance MgB2 wires by an internal Mg diffusion process. Supercond. Sci. Technol. 21, 032001 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Flükiger, R., Hossain, M.S.A., Kulich, M., Senatore, C.: Technical aspects of cold high pressure densification (CHPD) on long lengths of in situ MgB2 wires with enhanced Jc values. Adv. Cryog. Eng., AIP Conf. Proc. 1435, 353 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Akdoğan, M., Yetiş, H., Gajda, D., Karaboğa, F., Rogacki, K., Morawski, A., Belenli, İ.: Use of amorphous boron and amorphous nano boron powder mixture in fabrication of long in-situ MgB2/fe wires. J. Alloys Compd. 702, 399 (2017)CrossRefGoogle Scholar
  8. 8.
    Gajda, D., Morawski, A., Zaleski, A.J., Akdoğan, M., Yetiş, H., Karaboğa, F., Cetner, T., Belenli, İ.: The influence of HIP process on critical parameters of MgB2/fe wires with big boron grains and without barriers. J. Alloys Compd. 687, 616 (2016)CrossRefGoogle Scholar
  9. 9.
    Hossain, M.S.A., Motaman, A., Barua, S., Patel, D., Mustapic, M., Kim, J.H., Maeda, M., Rindfleisch, M., Tomsic, M., Cicek, O., Melisek, T., Kopera, L., Kario, A., Ringsdorf, B., Runtsch, B., Jung, A., Dou, S.X., Goldacker, W., Kovac, P.: The roles of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables. Supercond. Sci. Technol. 27, 095016 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Senol, M.A., Karaboga, F.: Microstructure and transport properties of compaction-modified in situ fe/ MgB2 wires. J. Supercond. Nov. Magn. 29, 2479 (2016)CrossRefGoogle Scholar
  11. 11.
    Kario, A., Morawski, A., Haßler, W., Herrmann, M., Rodig, C., Schubert, M., Nenkov, K., Holzapfel, B., Schultz, L., Glowacki, B.A., Hopkins S.C.: Novel ex situ MgB2 barrier for in situ monofilamentary MgB2 conductors with fe and cu sheath material. Supercond. Sci. Technol. 23, 025018 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Gao, Z., Ma, Y., Wang, D., Zhang, X.: Development of doped MgB2 wires and tapes for practical applications. IEEE Trans. Appl. Supercond. 20, 1515 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Kim, J.H., Zhou, S., Hossain, M.S.A., Pan, A.V., Dou, S.X.: Carbohydrate doping to enhance electromagnetic properties of MgB2 superconductors. Appl. Phys. Lett. 89, 142505 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Serquis, A., Pasquini, G., Civale, L.: Carbon nanotubes addition effects on MgB2 superconducting properties. In: Marulanda, J.M. (ed.) Electronic Properties of Carbon Nanotubes. InTech, Rijeka (2011). ISBN 978-953-307-499-3.
  15. 15.
    Kodama, M., Suzuki, T., Tanaka, H., Okishiro, K., Okamoto, K., Nishijima, G., Matsumoto, A., Yamamoto, A., Shimoyama, J., Kishio, K.: High-performance dense MgB superconducting wire fabricated from mechanically milled powder. Supercond. Sci. Technol. 30, 044006 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Ye, S., Kumakura, H.: The development of MgB2 superconducting wires fabricated with an internal Mg diffusion (IMD) process. Supercond. Sci. Technol. 29, 113004 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Gajda, D., Morawski, A., Zaleski, A., Kurnatowska, M., Cetner, T., Gajda, G., Presz, A., Rindfleisch, M., Tomsic, M.: The influence of HIP on the homogeneity, Jc, Birr, Tc and Fp in MgB2 wires. Supercond. Sci. Technol. 28, 015002 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Gajda, D., Zaleski, A.J., Morawski, A., Rindfleisch, M., Thong, C., Tomsic, M.: The electric field jump—detection of damaged Nb barrier in MgB2 wires annealed under pressure. Supercond. Sci. Technol. 28, 115003 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Kim, J.H., Dou, S.X., Shi, D.Q., Rindfleisch, M., Tomsic, M.: Study of MgO formation and structural defects in in situ processed MgB2/fe wires. Supercond. Sci. Technol. 20, 1026 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Rowell, J.M.: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16, R17 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Xu, X., Kim, J.H., Dou, S.X., Choi, S., Lee, J.H., Park, H.W., Rindfleish, M., Tomsic, M.: A correlation between transport current density and grain connectivity in MgB2/fe wire made from ball-milled boron. J. Appl. Phys. 105, 103913 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Grivel, J.C., Pinholt, R., Andersen, N.H., Kováč, P., Hušek, I., Homeyer, J.: In situ investigations of phase transformations in fe-sheathed MgB2 wires. Supercond. Sci. Technol. 19, 96 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Fırat Karaboğa
    • 1
    Email author
  • Hakan Yetiş
    • 2
  • Mustafa Akdoğan
    • 2
  • İbrahim Belenli
    • 2
  1. 1.Mehmet TanrıkuluVocational School of Health ServicesAbant Izzet Baysal UniversityBoluTurkey
  2. 2.Physics Department, Faculty of Arts and SciencesAbant İzzet Baysal UniversityBoluTurkey

Personalised recommendations