Advertisement

A Comprehensive Investigation of Superconductor KBi2 via First-Principles Calculations

  • Jianyong Chen
Original Paper

Abstract

The electronic properties, lattice vibration, and electron-phonon interaction properties of KBi2 are studied systematically by first-principles calculations. The agreement of calculated Debye temperature, electron-phonon coupling constant, and transition temperature with latest experiments validates the reliability of our work. Our results provide evidence that the superconducting transition of KBi2 originates from isotropical coupling of all phonon modes according to isotropical Migdal-Eliashberg theory.

Keywords

Laves phase KBi2 Phonons Superconductivity First principles 

Notes

Acknowledgments

This work is supported by the Guangxi Base Promotion Project for Young and Middle-aged University Teachers (no. 2017KY0857).

References

  1. 1.
    Zhao, L.L., Lausberg, S., Kim, H., Tanatar, M.A., Brando, M., Prozorov, R., Morosan, E.: Phys. Rev. B 85, 214526 (2012).  https://doi.org/10.1103/PhysRevB.85.214526 ADSCrossRefGoogle Scholar
  2. 2.
    Yamaguchi, Y., Waki, S., Mitsugi, K.: J. Phys. Soc. Jpn. 56, 419 (1987).  https://doi.org/10.1143/JPSJ.56.419 ADSCrossRefGoogle Scholar
  3. 3.
    Gottlieb, U., Lasjaunias, J.C., Tholence, J.L., Laborde, O., Thomas, O., Madar, R.: Phys. Rev. B 45, 4803 (1992).  https://doi.org/10.1103/PhysRevB.45.4803 ADSCrossRefGoogle Scholar
  4. 4.
    Palstra, T.T.M., Lu, G., Menovsky, A.A., Nieuwenhuys, G.J., Kes, P.H., Mydosh, J.A.: Phys. Rev. B 34, 4566 (1986).  https://doi.org/10.1103/PhysRevB.34.4566 ADSCrossRefGoogle Scholar
  5. 5.
    Anand, V.K., Hillier, A.D., Adroja, D.T., Strydom, A.M., Michor, H., McEwen, K.A., Rainford, B.D.: Phys. Rev. B 83, 064522 (2011).  https://doi.org/10.1103/PhysRevB.83.064522 ADSCrossRefGoogle Scholar
  6. 6.
    Svanidze, E., Morosan, E.: Phys. Rev. B 85, 174514 (2012).  https://doi.org/10.1103/PhysRevB.85.174514 ADSCrossRefGoogle Scholar
  7. 7.
    Ross, J.W., Crangle, J.: Phys. Rev. 133, A509 (1964).  https://doi.org/10.1103/PhysRev.133.A509 ADSCrossRefGoogle Scholar
  8. 8.
    Liu, J.J., Ren, W.J., Zhang, Z.D.: J. Appl. Phys. 100, 023904 (2006).  https://doi.org/10.1063/1.2219344 ADSCrossRefGoogle Scholar
  9. 9.
    Liu, C.J., Zhu, J.H., Brady, M.P., Mckamey, C.G., Pike, L.M.: Intermetallics 8, 1119 (2000).  https://doi.org/10.1016/S0966-9795(00)00109-6 CrossRefGoogle Scholar
  10. 10.
    Tao, X., Ouyang, Y., Liu, H., Zeng, F., Feng, Y., Du, Y., Jin, Z.: Comp. Mater. Sci. 44, 392 (2008).  https://doi.org/10.1016/j.commatsci.2008.03.036 CrossRefGoogle Scholar
  11. 11.
    Duman, S., Ab Tütüncü, H. M.: J. Appl. Phys. 111, 033514 (2012).  https://doi.org/10.1063/1.3681327 ADSCrossRefGoogle Scholar
  12. 12.
    Chen, J.Y.: J. Supercond. Novel Magn. 29, 1219 (2016).  https://doi.org/10.1007/s10948-016-3428-z CrossRefGoogle Scholar
  13. 13.
    Eliashberg, G.M., Eksperim, Zh.: i Teor Fiz. 38, 966 (1960)Google Scholar
  14. 14.
    Carbotte, J.P.: Rev. Mod. Phys. 62, 1027 (1990).  https://doi.org/10.1103/RevModPhys.62.1027 ADSCrossRefGoogle Scholar
  15. 15.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). http://www.pnas.org/content/30/9/244 ADSCrossRefGoogle Scholar
  16. 16.
    Sun, S., Liu, K., Lei, H.: J. Phys.: Condens. Matter. 28, 085701 (2016).  https://doi.org/10.1088/0953-8984/28/8/085701 ADSGoogle Scholar
  17. 17.
    Giannozzi, P., et al.: J. Phys.: Condens. Matter 21, 395502 (2009).  https://doi.org/10.1088/0953-8984/21/39/395502 Google Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 ADSCrossRefGoogle Scholar
  19. 19.
    Klimczuk, T., Ronning, F., Sidorov, V., Cava, R.J., Thompson, J.D.: Phys. Rev. Lett. 99, 257004 (2007).  https://doi.org/10.1103/PhysRevLett.99.257004 ADSCrossRefGoogle Scholar
  20. 20.
    Baroni, S., Gironcoli, S.D., Corso, A.D., et al.: Rev. Mod. Phys. 73, 515 (2001).  https://doi.org/10.1103/RevModPhys.73.515 ADSCrossRefGoogle Scholar
  21. 21.
    Kokalj, A.: Comp. Mater. Sci. 28, 155 (2003).  https://doi.org/10.1016/S0927-0256(03)00104-6 CrossRefGoogle Scholar
  22. 22.
    Savrasov, S., Savrasov, D.: Phys. Rev. B 54, 16487 (1996).  https://doi.org/10.1103/PhysRevB.54.16487 ADSCrossRefGoogle Scholar
  23. 23.
    Savrasov, S., Savrasov, D., Anderson, O.: Phys. Rev. Lett. 72, 372 (1994).  https://doi.org/10.1103/PhysRevLett.72.372 ADSCrossRefGoogle Scholar
  24. 24.
    Siegel, A., Parlinski, K., Wdowik, U.D.: Phys. Rev. B 74, 104116 (2006).  https://doi.org/10.1103/PhysRevB.74.104116 ADSCrossRefGoogle Scholar
  25. 25.
    Maradudin, A., et al.: Solid state physics, 2nd edn. Academic, New York (1971). chapter 4Google Scholar
  26. 26.
    Migdal, A.B.: Sov. Phys. JETP 7, 996–1001 (1958). http://www.jetp.ac.ru/cgi-bin/e/index/e/7/6/p996?a=list Google Scholar
  27. 27.
    Eliashberg, G.M.: Sov. Phys. JETP 11, 696–702 (1960) [http://www.jetp.ac.ru/cgi-bin/e/index/e/11/3/p696?a=list]Google Scholar
  28. 28.
    Mcmillan, W.: Phys. Rev. 167, 331 (1968).  https://doi.org/10.1103/PhysRev.167.331 ADSCrossRefGoogle Scholar
  29. 29.
    Dynes, R.C.: Solid State Commun. 10, 615 (1972).  https://doi.org/10.1016/0038-1098(72)90603-5 ADSCrossRefGoogle Scholar
  30. 30.
    Allen, P., Dynes, R.: Phys. Rev. B 12, 905 (1975).  https://doi.org/10.1103/PhysRevB.12.905 ADSCrossRefGoogle Scholar
  31. 31.
    Grimvall, G.: The electron-phonon interaction in metals. North-Holland, Amsterdam (1981)Google Scholar
  32. 32.
    Allen, P.B., Mitrovic, B.: Theory of superconducting T c. In: Seitz, F., Turnbull, D., Ehrenreich, H (eds.) Solid State Physics, vol. 37. Academic, New York (1982)Google Scholar
  33. 33.
    Richardson, C.F., Ashcroft, N.W.: Phys. Rev. B 55, 15130 (1997).  https://doi.org/10.1103/PhysRevB.55.15130 ADSCrossRefGoogle Scholar
  34. 34.
    Lüders, M., Marques, M.A.L., Lathiotakis, N.N., Floris, A., Profeta, G., Fast, L., Continenza, A., Massidda, S., Gross, E.K.U.: Phys. Rev. B 72, 024545 (2005).  https://doi.org/10.1103/PhysRevB.72.024545 ADSCrossRefGoogle Scholar
  35. 35.
    Marques, M.A.L., Lüders, M., Lathiotakis, N.N., Profeta, G., Floris, A., Fast, L., Continenza, A., Gross, E.K.U., Massidda, S.: Phys. Rev. B 72, 024546 (2005).  https://doi.org/10.1103/PhysRevB.72.024546 ADSCrossRefGoogle Scholar
  36. 36.
    Si, C., Liu, Z., Duan, W., Liu, F.: Phys. Rev. Lett. 111, 196802 (2013).  https://doi.org/10.1103/PhysRevLett.111.196802 ADSCrossRefGoogle Scholar
  37. 37.
    Giustino, F., et al.: Phys. Rev. Lett. 98, 047005 (2007).  https://doi.org/10.1103/PhysRevLett.87.087005 ADSCrossRefGoogle Scholar
  38. 38.
    Zhang, P., Louie, S.G., Cohen, M.L.: Phys. Rev. Lett. 98, 067005 (2007).  https://doi.org/10.1103/PhysRevLett.98.067005 ADSCrossRefGoogle Scholar
  39. 39.
    Floris, A., De Gironcoli, S., Gross, E.K.U., Cococcioni, M.: Phys. Rev. B 84, 161102 (2011).  https://doi.org/10.1103/PhysRevB.84.161102 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of ScienceGuilin University of Aerospace TechnologyGuilinPeople’s Republic of China

Personalised recommendations