Advertisement

Ferromagnetism in Fe-doped BaTiO3 Ceramics

  • Bipul Deka
  • S. Ravi
Original Paper
  • 143 Downloads

Abstract

Polycrystalline samples of BaTi1−xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.

Keywords

Fe-doped BaTiO3 Bound magnetic polaron Ferromagnetism 

Notes

Acknowledgements

We acknowledge CIF, IIT, Guwahati, for VSM and Raman facilities. We are thankful to Dr. M. Kar, IIT, Patna, for providing the FE-SEM facilities.

References

  1. 1.
    Khomskii, D.I.: J. Magn. Magn. Mater. 306, 1 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Ramesh, R., Spaldin, N.A.: Nat. Mater. 6, 21 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Scott, J.F.: NPG Asia Mater. 5, e72 (2013)CrossRefGoogle Scholar
  4. 4.
    Guo, Z., Yang, L., Qiu, H., Zhan, X., Yin, J., Cao, L.: Mod. Phys. Lett. B 26, 1250056 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Dang, N.V., Thanh, T.D., Hong, L.V., Lam, V.D., Phan, T.-L.: J. Appl. Phys. 110, 043914 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Nguyen, H.M., Dang, N.V., Chuang, P.-Y., Thanh, T.D., Hu, C.-W., Chen, T.-Y., Lam, V.D., Lee, C.-H., Hong, L.V.: Appl. Phys. Lett. 99, 202501 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Fang, Q.-L., Zhang, J.-M., Xu, K.-W.: Phys. B: Condense Matt. 424, 79 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Nakayama, H., Katayama, Y.H.: Jpn. J. Appl. Phys. 40, L1355 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Xu, B., Yin, K.B., Lin, J., Xia, Y.D., Wan, X.G., Yin, J., Bai, X.J., Du, J., Liu, Z.G.: Phys. Rev. B 79, 134109 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Apostolova, I.N., Apostolov, A.T., Bahoosh, S.G., Wesselinowa, J.M.: J. Appl. Phys. 113, 203904 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Ray, S., Mahadevan, P., Mandal, S., Krishnakumar, S.R., Kuroda, C.S., Sasaki, T., Taniyama, T., Itoh, M.: Phys. Rev. B 77, 104416 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Lin, F., Jiang, D., Ma, X., Shi, W.: J. Magn. Magn. Mater. 320, 691 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Young, R.A.: The Rietveld Method. Oxford University Press, New York (1996)Google Scholar
  14. 14.
    Eror, N.G., Loehr, T.M., Cornilsen, B.C.: Ferroelectrics 28, 321 (1980)CrossRefGoogle Scholar
  15. 15.
    Margarita, G.-H., Geneviève, C., Damien, B., Antonieta, G.-M., Felipe, C.-R., Rachid, M.: Nano-Micro Lett. 5, 57 (2013)CrossRefGoogle Scholar
  16. 16.
    Cho, W.-S., Hamada, E., Takayanagi, K.: J. Appl. Phys. 81, 3000 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Venkateswaran, U.D., Naik, V.M., Naik, R.: Phys. Rev. B 58, 14256 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Dang, N.V., Phan, T.-L., Thanh, T.D., Lam, V.D., Hong, L.V.: J. Appl. Phys. 111, 113913 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Rabuffetti, F.A., Brutchey, R.L.: J. Am. Chem. Soc. 134, 9475 (2012)CrossRefGoogle Scholar
  20. 20.
    Stearns, M.B., Cheng, Y.: J. Appl. Phys. 75, 6894 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Valant, M., Arčon, I., Mikulska, I., Lisjak, D.: Chem. Mater. 25, 3544 (2013)CrossRefGoogle Scholar
  22. 22.
    Zorko, A., Pregelj, M., Gomilšek, M., Jagličić, Z., Pajić, D., Telling, M., Arčon, I., Mikulska, I., Valant, M.: Sci. Rep. 5, 7703 (2015)CrossRefGoogle Scholar
  23. 23.
    Chikada, S., Hirose, K., Yamamoto, T.: Jpn. J. Appl. Phys. 49, 091502 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Mohanty, S., Ravi, S.: Solid State Commun. 150, 739 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Dietl, T., Spaek, J.: Phys. Rev. Lett. 48, 355 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    Durst, A.C., Bhatt, R.N., Wolff, P.A.: Phys. Rev. B 65, 235205 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    McCabe, G.H., Fries, T., Liu, M.T., Shapira, Y., Ram-Mohan, L.R., Kershaw, R., Wold, A., Fau, C., Averous, M., McNiff, E.J.: Phys. Rev. B 56, 6673 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Tadica, M., Panjanb, M., Damnjanovic, V., Milosevic, I.: Appl. Surf. Sci. 320, 183 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations